This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulltgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → - 𝐴 ∈ ℝ ) |
| 3 | lt0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < - 𝐴 ) |
| 6 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 7 | mulgt0 | ⊢ ( ( ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( - 𝐴 · 𝐵 ) ) | |
| 8 | 2 5 6 7 | syl21anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( - 𝐴 · 𝐵 ) ) |
| 9 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 11 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 13 | 10 12 | mulneg1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| 14 | 8 13 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < - ( 𝐴 · 𝐵 ) ) |
| 15 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 16 | 15 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 17 | 16 | lt0neg1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 · 𝐵 ) < 0 ↔ 0 < - ( 𝐴 · 𝐵 ) ) ) |
| 18 | 14 17 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) < 0 ) |