This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute function operation through a sequence. Note that G ( z ) is an implicit function on z . (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqof.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| seqof.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqof.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) | ||
| Assertion | seqof | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqof.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | seqof.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | seqof.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 4 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 5 | 4 | rgenw | ⊢ ∀ 𝑧 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ∈ V |
| 6 | eqid | ⊢ ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) | |
| 7 | 6 | fnmpt | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ∈ V → ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) Fn 𝐴 ) |
| 8 | 5 7 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) Fn 𝐴 ) |
| 9 | 3 | fneq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ↔ ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) Fn 𝐴 ) ) |
| 10 | 8 9 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ) |
| 11 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 12 | fneq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑧 Fn 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ) ) | |
| 13 | 11 12 | elab | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ) |
| 14 | 10 13 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → 𝑥 Fn 𝐴 ) | |
| 16 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → 𝑦 Fn 𝐴 ) | |
| 17 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → 𝐴 ∈ 𝑉 ) |
| 18 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 19 | 15 16 17 17 18 | offn | ⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) |
| 20 | 19 | ex | ⊢ ( 𝜑 → ( ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) → ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) ) |
| 21 | vex | ⊢ 𝑥 ∈ V | |
| 22 | fneq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 Fn 𝐴 ↔ 𝑥 Fn 𝐴 ) ) | |
| 23 | 21 22 | elab | ⊢ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ 𝑥 Fn 𝐴 ) |
| 24 | vex | ⊢ 𝑦 ∈ V | |
| 25 | fneq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 Fn 𝐴 ↔ 𝑦 Fn 𝐴 ) ) | |
| 26 | 24 25 | elab | ⊢ ( 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ 𝑦 Fn 𝐴 ) |
| 27 | 23 26 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ↔ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) |
| 28 | ovex | ⊢ ( 𝑥 ∘f + 𝑦 ) ∈ V | |
| 29 | fneq1 | ⊢ ( 𝑧 = ( 𝑥 ∘f + 𝑦 ) → ( 𝑧 Fn 𝐴 ↔ ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) ) | |
| 30 | 28 29 | elab | ⊢ ( ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) |
| 31 | 20 27 30 | 3imtr4g | ⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) → ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) |
| 32 | 31 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) → ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 33 | 2 14 32 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 34 | fvex | ⊢ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ V | |
| 35 | fneq1 | ⊢ ( 𝑧 = ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) → ( 𝑧 Fn 𝐴 ↔ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ) ) | |
| 36 | 34 35 | elab | ⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ) |
| 37 | 33 36 | sylib | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ) |
| 38 | dffn5 | ⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ↔ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) ) | |
| 39 | 37 38 | sylib | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) ) |
| 40 | fveq1 | ⊢ ( 𝑤 = ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) → ( 𝑤 ‘ 𝑧 ) = ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) | |
| 41 | eqid | ⊢ ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) = ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) | |
| 42 | fvex | ⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ∈ V | |
| 43 | 40 41 42 | fvmpt | ⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) |
| 44 | 34 43 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) |
| 45 | 32 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) → ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 46 | 14 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 47 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 48 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑧 ) = ( 𝑥 ‘ 𝑧 ) ) | |
| 49 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) | |
| 50 | 15 16 17 17 18 48 49 | ofval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) = ( ( 𝑥 ‘ 𝑧 ) + ( 𝑦 ‘ 𝑧 ) ) ) |
| 51 | 50 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) = ( ( 𝑥 ‘ 𝑧 ) + ( 𝑦 ‘ 𝑧 ) ) ) |
| 52 | fveq1 | ⊢ ( 𝑤 = ( 𝑥 ∘f + 𝑦 ) → ( 𝑤 ‘ 𝑧 ) = ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) ) | |
| 53 | fvex | ⊢ ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) ∈ V | |
| 54 | 52 41 53 | fvmpt | ⊢ ( ( 𝑥 ∘f + 𝑦 ) ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) ) |
| 55 | 28 54 | ax-mp | ⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) |
| 56 | fveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑧 ) = ( 𝑥 ‘ 𝑧 ) ) | |
| 57 | fvex | ⊢ ( 𝑥 ‘ 𝑧 ) ∈ V | |
| 58 | 56 41 57 | fvmpt | ⊢ ( 𝑥 ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ‘ 𝑧 ) ) |
| 59 | 58 | elv | ⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ‘ 𝑧 ) |
| 60 | fveq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) | |
| 61 | fvex | ⊢ ( 𝑦 ‘ 𝑧 ) ∈ V | |
| 62 | 60 41 61 | fvmpt | ⊢ ( 𝑦 ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ‘ 𝑧 ) ) |
| 63 | 62 | elv | ⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ‘ 𝑧 ) |
| 64 | 59 63 | oveq12i | ⊢ ( ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) + ( 𝑦 ‘ 𝑧 ) ) |
| 65 | 51 55 64 | 3eqtr4g | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 66 | 27 65 | sylan2b | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 67 | fveq1 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( 𝑤 ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) ) | |
| 68 | fvex | ⊢ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) ∈ V | |
| 69 | 67 41 68 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) ) |
| 70 | 11 69 | ax-mp | ⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) |
| 71 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 72 | 71 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑧 ) ) |
| 73 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑧 ∈ 𝐴 ) | |
| 74 | 6 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) ∈ V ) → ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 75 | 73 4 74 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 76 | 72 75 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 77 | 70 76 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 78 | 45 46 47 66 77 | seqhomo | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 79 | 44 78 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 80 | 79 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 81 | 39 80 | eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |