This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,] 𝐵 ) = { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ) ) |
| 3 | df-ne | ⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ≠ ∅ ↔ ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ) | |
| 4 | rabn0 | ⊢ ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) | |
| 5 | 3 4 | bitr3i | ⊢ ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 6 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) | |
| 7 | 6 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
| 9 | 8 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
| 10 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 11 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 12 | xrleid | ⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵 ) | |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ≤ 𝐵 ) |
| 14 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵 ) ) | |
| 15 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ≤ 𝐵 ↔ 𝐵 ≤ 𝐵 ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
| 17 | 16 | rspcev | ⊢ ( ( 𝐵 ∈ ℝ* ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 18 | 10 11 13 17 | syl12anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 19 | 18 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 → ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 20 | 9 19 | impbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℝ* ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 21 | 5 20 | bitrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ 𝐴 ≤ 𝐵 ) ) |
| 22 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 23 | 21 22 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ ¬ 𝐵 < 𝐴 ) ) |
| 24 | 23 | con4bid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( { 𝑥 ∈ ℝ* ∣ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) } = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 25 | 2 24 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |