This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulm0.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulm0.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulm0.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| ulm0.g | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) | ||
| Assertion | ulm0 | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulm0.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulm0.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ulm0.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 4 | ulm0.g | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 5 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | 6 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 8 | 7 | ne0d | ⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
| 9 | ral0 | ⊢ ∀ 𝑧 ∈ ∅ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 | |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝑆 = ∅ ) | |
| 11 | 10 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ ∅ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 12 | 9 11 | mpbiri | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 13 | 12 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 14 | 13 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 15 | r19.2z | ⊢ ( ( 𝑍 ≠ ∅ ∧ ∀ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) | |
| 16 | 8 14 15 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 17 | 16 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝑀 ∈ ℤ ) |
| 19 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 20 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑆 = ∅ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 21 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑆 = ∅ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 22 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 23 | 0ex | ⊢ ∅ ∈ V | |
| 24 | 10 23 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝑆 ∈ V ) |
| 25 | 1 18 19 20 21 22 24 | ulm2 | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 26 | 17 25 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑆 = ∅ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |