This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak base ordering relationship for exponentiation of real bases to a fixed nonnegative integer exponent. (Contributed by NM, 18-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leexp1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 0 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 0 ) ) | |
| 3 | 1 2 | breq12d | ⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ↔ ( 𝐴 ↑ 0 ) ≤ ( 𝐵 ↑ 0 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 0 ) ≤ ( 𝐵 ↑ 0 ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 𝑘 ) ) | |
| 7 | 5 6 | breq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ↔ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) | |
| 10 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) | |
| 11 | 9 10 | breq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 𝑁 ) ) | |
| 15 | 13 14 | breq12d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ↔ ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 17 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 18 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 19 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 0 ) = 1 ) |
| 21 | 1le1 | ⊢ 1 ≤ 1 | |
| 22 | 20 21 | eqbrtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 0 ) ≤ 1 ) |
| 23 | exp0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 0 ) = 1 ) |
| 25 | 22 24 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 0 ) ≤ ( 𝐵 ↑ 0 ) ) |
| 26 | 17 18 25 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑ 0 ) ≤ ( 𝐵 ↑ 0 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 0 ) ≤ ( 𝐵 ↑ 0 ) ) |
| 28 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) | |
| 29 | 28 | ad4ant14 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℝ ) |
| 30 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) | |
| 31 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 32 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝐴 ) | |
| 33 | expge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴 ) → 0 ≤ ( 𝐴 ↑ 𝑘 ) ) | |
| 34 | 30 31 32 33 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 𝐴 ↑ 𝑘 ) ) |
| 35 | reexpcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) | |
| 36 | 35 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) |
| 37 | 29 34 36 | jca31 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 𝑘 ) ) ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) ) |
| 38 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 39 | simpl | ⊢ ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 𝐴 ) | |
| 40 | 38 39 | anim12i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 42 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) | |
| 43 | 37 41 42 | jca32 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 𝑘 ) ) ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) ∧ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) → ( ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 𝑘 ) ) ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) ∧ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ) ) |
| 45 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ≤ 𝐵 ) | |
| 46 | 45 | anim1ci | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) → ( ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ∧ 𝐴 ≤ 𝐵 ) ) |
| 47 | lemul12a | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 𝑘 ) ) ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℝ ) ∧ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ≤ ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) ) | |
| 48 | 44 46 47 | sylc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) → ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ≤ ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 49 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) | |
| 50 | 17 49 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 51 | 50 | ad5ant14 | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 52 | expp1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) | |
| 53 | 18 52 | sylan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 54 | 53 | ad5ant24 | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 55 | 48 51 54 | 3brtr4d | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) |
| 56 | 55 | ex | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 57 | 56 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 58 | 57 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑘 ) ≤ ( 𝐵 ↑ 𝑘 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ≤ ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 59 | 4 8 12 16 27 58 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) ) |
| 60 | 59 | exp4c | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) ) ) ) |
| 61 | 60 | com3l | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 𝑁 ∈ ℕ0 → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) ) ) ) |
| 62 | 61 | 3imp1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ↑ 𝑁 ) ≤ ( 𝐵 ↑ 𝑁 ) ) |