This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Weierstrass M-test. If F is a sequence of functions which are uniformly bounded by the convergent sequence M ( k ) , then the series generated by the sequence F converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mtest.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) | |
| mtest.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| mtest.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| mtest.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| mtest.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) | ||
| mtest.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) | ||
| mtest.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) | ||
| mtest.d | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) | ||
| Assertion | mtest | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtest.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) | |
| 2 | mtest.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 3 | mtest.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | mtest.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 5 | mtest.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) | |
| 6 | mtest.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) | |
| 7 | mtest.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) | |
| 8 | mtest.d | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) | |
| 9 | 1 | climcau | ⊢ ( ( 𝑁 ∈ ℤ ∧ seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) |
| 10 | 2 8 9 | syl2anc | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) |
| 11 | seqfn | ⊢ ( 𝑁 ∈ ℤ → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 13 | 1 | fneq2i | ⊢ ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ↔ seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 14 | 12 13 | sylibr | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ) |
| 15 | 3 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑆 ∈ V ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) | |
| 18 | 17 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 20 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑖 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 21 | 20 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑖 ) → 𝑘 ∈ 𝑍 ) |
| 22 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) | |
| 23 | 19 21 22 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 24 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 26 | 25 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 27 | 21 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
| 28 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 29 | 28 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 30 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) | |
| 31 | fvex | ⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ V | |
| 32 | 29 30 31 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 33 | 27 32 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 34 | 33 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 35 | 26 34 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) |
| 36 | 16 18 35 | seqof | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
| 37 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑁 ∈ ℤ ) |
| 38 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 39 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
| 41 | 40 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ∈ ℂ ) |
| 42 | 41 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ∈ ℂ ) |
| 43 | 42 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) : 𝑍 ⟶ ℂ ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 45 | 1 37 44 | serf | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) : 𝑍 ⟶ ℂ ) |
| 46 | 45 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑍 ) → ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 47 | 46 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 48 | 47 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) |
| 49 | cnex | ⊢ ℂ ∈ V | |
| 50 | elmapg | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) | |
| 51 | 49 16 50 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
| 52 | 48 51 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 53 | 36 52 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 54 | 53 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 55 | ffnfv | ⊢ ( seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ↔ ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ∧ ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) ) | |
| 56 | 14 54 55 | sylanbrc | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 58 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑖 ∈ 𝑍 ) |
| 59 | 58 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑖 ∈ 𝑍 ) |
| 60 | 57 59 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 61 | elmapi | ⊢ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) : 𝑆 ⟶ ℂ ) | |
| 62 | 60 61 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) : 𝑆 ⟶ ℂ ) |
| 63 | 62 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) ∈ ℂ ) |
| 64 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ 𝑍 ) | |
| 65 | 57 64 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 66 | elmapi | ⊢ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) | |
| 67 | 65 66 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 68 | 67 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
| 69 | 63 68 | subcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ∈ ℂ ) |
| 70 | 69 | abscld | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 71 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑗 + 1 ) ... 𝑖 ) ∈ Fin ) | |
| 72 | ssun2 | ⊢ ( ( 𝑗 + 1 ) ... 𝑖 ) ⊆ ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) | |
| 73 | 64 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 74 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 75 | elfzuzb | ⊢ ( 𝑗 ∈ ( 𝑁 ... 𝑖 ) ↔ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 76 | 73 74 75 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ( 𝑁 ... 𝑖 ) ) |
| 77 | fzsplit | ⊢ ( 𝑗 ∈ ( 𝑁 ... 𝑖 ) → ( 𝑁 ... 𝑖 ) = ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) ) | |
| 78 | 76 77 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑁 ... 𝑖 ) = ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) ) |
| 79 | 72 78 | sseqtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑗 + 1 ) ... 𝑖 ) ⊆ ( 𝑁 ... 𝑖 ) ) |
| 80 | 79 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) |
| 81 | 80 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) |
| 82 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 83 | 82 21 22 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 84 | 83 24 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 85 | 84 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 86 | 85 | an32s | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 87 | 81 86 | syldan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 88 | 87 | abscld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 89 | 71 88 | fsumrecl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 90 | 1 2 6 | serfre | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) : 𝑍 ⟶ ℝ ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑁 ( + , 𝑀 ) : 𝑍 ⟶ ℝ ) |
| 92 | 91 59 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) ∈ ℝ ) |
| 93 | 91 64 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ∈ ℝ ) |
| 94 | 92 93 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ∈ ℝ ) |
| 95 | 94 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ∈ ℂ ) |
| 96 | 95 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 97 | 96 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 98 | 58 36 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
| 99 | 98 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
| 100 | 99 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ‘ 𝑧 ) ) |
| 101 | fvex | ⊢ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ V | |
| 102 | eqid | ⊢ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) | |
| 103 | 102 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
| 104 | 101 103 | mpan2 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
| 105 | 100 104 | sylan9eq | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
| 106 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ) | |
| 107 | fveq2 | ⊢ ( 𝑖 = 𝑗 → ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) | |
| 108 | 107 | mpteq2dv | ⊢ ( 𝑖 = 𝑗 → ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
| 109 | 106 108 | eqeq12d | ⊢ ( 𝑖 = 𝑗 → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ↔ ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) ) |
| 110 | 36 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
| 111 | 110 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
| 112 | 109 111 64 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
| 113 | 112 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ‘ 𝑧 ) ) |
| 114 | fvex | ⊢ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ∈ V | |
| 115 | eqid | ⊢ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) | |
| 116 | 115 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ∈ V ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
| 117 | 114 116 | mpan2 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
| 118 | 113 117 | sylan9eq | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
| 119 | 105 118 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) = ( ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) − ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
| 120 | 21 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
| 121 | 120 32 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 122 | 59 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑖 ∈ 𝑍 ) |
| 123 | 122 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 124 | 121 123 86 | fsumser | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
| 125 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 126 | 125 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 127 | 126 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 128 | 127 32 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 129 | 64 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑗 ∈ 𝑍 ) |
| 130 | 129 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 131 | 82 126 22 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 132 | 131 24 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 133 | 132 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 134 | 133 | an32s | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 135 | 128 130 134 | fsumser | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
| 136 | 124 135 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) − ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
| 137 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑗 ) ∈ Fin ) | |
| 138 | 137 134 | fsumcl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 139 | 71 87 | fsumcl | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 140 | eluzelre | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑗 ∈ ℝ ) | |
| 141 | 73 140 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℝ ) |
| 142 | 141 | ltp1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 < ( 𝑗 + 1 ) ) |
| 143 | fzdisj | ⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 𝑁 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑖 ) ) = ∅ ) | |
| 144 | 142 143 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑁 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑖 ) ) = ∅ ) |
| 145 | 144 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑁 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑖 ) ) = ∅ ) |
| 146 | 78 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑖 ) = ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) ) |
| 147 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑖 ) ∈ Fin ) | |
| 148 | 145 146 147 86 | fsumsplit | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) + Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 149 | 138 139 148 | mvrladdd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 150 | 119 136 149 | 3eqtr2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 151 | 150 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 152 | 71 87 | fsumabs | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 153 | 151 152 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 154 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝜑 ) | |
| 155 | 154 21 6 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 156 | 80 155 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 157 | 156 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 158 | 81 21 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
| 159 | 7 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
| 160 | 159 | anass1rs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
| 161 | 158 160 | syldan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
| 162 | 71 88 157 161 | fsumle | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
| 163 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝑘 ) ) | |
| 164 | 59 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 165 | 155 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 166 | 163 164 165 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) ) |
| 167 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝑘 ) ) | |
| 168 | 154 126 6 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 169 | 168 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 170 | 167 73 169 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) |
| 171 | 166 170 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) ) = ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) |
| 172 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑁 ... 𝑗 ) ∈ Fin ) | |
| 173 | 172 169 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 174 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑗 + 1 ) ... 𝑖 ) ∈ Fin ) | |
| 175 | 80 165 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 176 | 174 175 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 177 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑁 ... 𝑖 ) ∈ Fin ) | |
| 178 | 144 78 177 165 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) ) |
| 179 | 173 176 178 | mvrladdd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
| 180 | 171 179 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
| 181 | 180 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) ) |
| 182 | 181 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) ) |
| 183 | 180 94 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 184 | 183 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 185 | 0red | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 0 ∈ ℝ ) | |
| 186 | 87 | absge0d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 187 | 185 88 157 186 161 | letrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 0 ≤ ( 𝑀 ‘ 𝑘 ) ) |
| 188 | 71 157 187 | fsumge0 | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 0 ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
| 189 | 184 188 | absidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
| 190 | 182 189 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
| 191 | 162 190 | breqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ) |
| 192 | 70 89 97 153 191 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ) |
| 193 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑟 ∈ ℝ+ ) | |
| 194 | 193 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑟 ∈ ℝ ) |
| 195 | lelttr | ⊢ ( ( ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∧ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) | |
| 196 | 70 97 194 195 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∧ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 197 | 192 196 | mpand | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 198 | 197 | ralrimdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 199 | 198 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 200 | 199 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 201 | 200 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 202 | 201 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 203 | 10 202 | mpd | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) |
| 204 | 1 2 3 56 | ulmcau | ⊢ ( 𝜑 → ( seq 𝑁 ( ∘f + , 𝐹 ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 205 | 203 204 | mpbird | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |