This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is within the open disk of radius R centered at zero, then the infinite series converges absolutely at X , and also converges when the series is multiplied by n . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| radcnvlt.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
| radcnvlt.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) | ||
| radcnvlt1.h | ⊢ 𝐻 = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) | ||
| Assertion | radcnvlt1 | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | radcnv.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 3 | radcnv.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 4 | radcnvlt.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 5 | radcnvlt.a | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 𝑅 ) | |
| 6 | radcnvlt1.h | ⊢ 𝐻 = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) | |
| 7 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 8 | 4 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 9 | 7 8 | sselid | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ* ) |
| 10 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 11 | 1 2 3 | radcnvcl | ⊢ ( 𝜑 → 𝑅 ∈ ( 0 [,] +∞ ) ) |
| 12 | 10 11 | sselid | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 13 | xrltnle | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑋 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( abs ‘ 𝑋 ) ) ) | |
| 14 | 9 12 13 | syl2anc | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) < 𝑅 ↔ ¬ 𝑅 ≤ ( abs ‘ 𝑋 ) ) ) |
| 15 | 5 14 | mpbid | ⊢ ( 𝜑 → ¬ 𝑅 ≤ ( abs ‘ 𝑋 ) ) |
| 16 | 3 | breq1i | ⊢ ( 𝑅 ≤ ( abs ‘ 𝑋 ) ↔ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ≤ ( abs ‘ 𝑋 ) ) |
| 17 | ssrab2 | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ | |
| 18 | 17 7 | sstri | ⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
| 19 | supxrleub | ⊢ ( ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* ∧ ( abs ‘ 𝑋 ) ∈ ℝ* ) → ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) | |
| 20 | 18 9 19 | sylancr | ⊢ ( 𝜑 → ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
| 21 | 16 20 | bitrid | ⊢ ( 𝜑 → ( 𝑅 ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑟 = 𝑠 → ( 𝐺 ‘ 𝑟 ) = ( 𝐺 ‘ 𝑠 ) ) | |
| 23 | 22 | seqeq3d | ⊢ ( 𝑟 = 𝑠 → seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) = seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ) |
| 24 | 23 | eleq1d | ⊢ ( 𝑟 = 𝑠 → ( seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ ↔ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) ) |
| 25 | 24 | ralrab | ⊢ ( ∀ 𝑠 ∈ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } 𝑠 ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
| 26 | 21 25 | bitrdi | ⊢ ( 𝜑 → ( 𝑅 ≤ ( abs ‘ 𝑋 ) ↔ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) ) |
| 27 | 15 26 | mtbid | ⊢ ( 𝜑 → ¬ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
| 28 | rexanali | ⊢ ( ∃ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ↔ ¬ ∀ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ → 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) | |
| 29 | 27 28 | sylibr | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
| 30 | ltnle | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 ↔ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) | |
| 31 | 8 30 | sylan | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 ↔ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 ↔ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) ) |
| 33 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 34 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝑋 ∈ ℂ ) |
| 35 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝑠 ∈ ℝ ) | |
| 36 | 35 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 𝑠 ∈ ℂ ) |
| 37 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑋 ) < 𝑠 ) | |
| 38 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 ∈ ℝ ) | |
| 39 | 34 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 40 | 34 | absge0d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 41 | 38 39 35 40 37 | lelttrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 < 𝑠 ) |
| 42 | 38 35 41 | ltled | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → 0 ≤ 𝑠 ) |
| 43 | 35 42 | absidd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑠 ) = 𝑠 ) |
| 44 | 37 43 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑠 ) ) |
| 45 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) | |
| 46 | 1 33 34 36 44 45 6 | radcnvlem1 | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
| 47 | 1 33 34 36 44 45 | radcnvlem2 | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) |
| 48 | 46 47 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ( abs ‘ 𝑋 ) < 𝑠 ) ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |
| 49 | 48 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) → ( ( abs ‘ 𝑋 ) < 𝑠 → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
| 50 | 32 49 | sylbird | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) ∧ seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ) → ( ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
| 51 | 50 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ ) → ( ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
| 52 | 51 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℝ ( seq 0 ( + , ( 𝐺 ‘ 𝑠 ) ) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ ( abs ‘ 𝑋 ) ) → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) ) |
| 53 | 29 52 | mpd | ⊢ ( 𝜑 → ( seq 0 ( + , 𝐻 ) ∈ dom ⇝ ∧ seq 0 ( + , ( abs ∘ ( 𝐺 ‘ 𝑋 ) ) ) ∈ dom ⇝ ) ) |