This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmclm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmclm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmclm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| ulmclm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| ulmclm.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| ulmclm.e | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) = ( 𝐻 ‘ 𝑘 ) ) | ||
| ulmclm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | ||
| Assertion | ulmclm | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐺 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmclm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmclm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ulmclm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 4 | ulmclm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 5 | ulmclm.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 6 | ulmclm.e | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) = ( 𝐻 ‘ 𝑘 ) ) | |
| 7 | ulmclm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 8 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 10 | 8 9 | oveq12d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑧 = 𝐴 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 12 | 11 | breq1d | ⊢ ( 𝑧 = 𝐴 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 13 | 12 | rspcv | ⊢ ( 𝐴 ∈ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 15 | 14 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 16 | 15 | reximdv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 17 | 16 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 18 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 19 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 20 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 21 | 7 20 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 22 | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 23 | 7 22 | syl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 24 | 1 2 3 18 19 21 23 | ulm2 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 25 | 6 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) ) |
| 26 | 21 4 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ℂ ) |
| 27 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 28 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 30 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ 𝑆 ) |
| 31 | 29 30 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) ∈ ℂ ) |
| 32 | 1 2 5 25 26 31 | clim2c | ⊢ ( 𝜑 → ( 𝐻 ⇝ ( 𝐺 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝐴 ) − ( 𝐺 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 33 | 17 24 32 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐻 ⇝ ( 𝐺 ‘ 𝐴 ) ) ) |
| 34 | 7 33 | mpd | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐺 ‘ 𝐴 ) ) |