This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A corollary of bernneq . (Contributed by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bernneq3 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 < ( 𝑃 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 3 | peano2re | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 5 | eluzelre | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) | |
| 6 | reexpcl | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℝ ) |
| 8 | 2 | ltp1d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 < ( 𝑁 + 1 ) ) |
| 9 | uz2m1nn | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 − 1 ) ∈ ℕ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 − 1 ) ∈ ℕ ) |
| 11 | 10 | nnred | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 − 1 ) ∈ ℝ ) |
| 12 | 11 2 | remulcld | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑃 − 1 ) · 𝑁 ) ∈ ℝ ) |
| 13 | peano2re | ⊢ ( ( ( 𝑃 − 1 ) · 𝑁 ) ∈ ℝ → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ∈ ℝ ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ∈ ℝ ) |
| 15 | 1red | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 16 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
| 18 | 10 | nnge1d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ ( 𝑃 − 1 ) ) |
| 19 | 2 11 17 18 | lemulge12d | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( ( 𝑃 − 1 ) · 𝑁 ) ) |
| 20 | 2 12 15 19 | leadd1dd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≤ ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ) |
| 21 | 5 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 22 | simpr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 23 | eluzge2nn0 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ0 ) | |
| 24 | nn0ge0 | ⊢ ( 𝑃 ∈ ℕ0 → 0 ≤ 𝑃 ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝑃 ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑃 ) |
| 27 | bernneq2 | ⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) | |
| 28 | 21 22 26 27 | syl3anc | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑃 − 1 ) · 𝑁 ) + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| 29 | 4 14 7 20 28 | letrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≤ ( 𝑃 ↑ 𝑁 ) ) |
| 30 | 2 4 7 8 29 | ltletrd | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 < ( 𝑃 ↑ 𝑁 ) ) |