This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facp1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | peano2nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 3 | facnn | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) = ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) = ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) ) |
| 5 | ovex | ⊢ ( 𝑁 + 1 ) ∈ V | |
| 6 | fvi | ⊢ ( ( 𝑁 + 1 ) ∈ V → ( I ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( I ‘ ( 𝑁 + 1 ) ) = ( 𝑁 + 1 ) |
| 8 | 7 | oveq2i | ⊢ ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( I ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( 𝑁 + 1 ) ) |
| 9 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( I ‘ ( 𝑁 + 1 ) ) ) ) | |
| 10 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 11 | 9 10 | eleq2s | ⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( I ‘ ( 𝑁 + 1 ) ) ) ) |
| 12 | facnn | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) = ( seq 1 ( · , I ) ‘ 𝑁 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , I ) ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 14 | 8 11 13 | 3eqtr4a | ⊢ ( 𝑁 ∈ ℕ → ( seq 1 ( · , I ) ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 15 | 4 14 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 16 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 17 | 16 | fveq2i | ⊢ ( ! ‘ ( 0 + 1 ) ) = ( ! ‘ 1 ) |
| 18 | fac1 | ⊢ ( ! ‘ 1 ) = 1 | |
| 19 | 17 18 | eqtri | ⊢ ( ! ‘ ( 0 + 1 ) ) = 1 |
| 20 | fvoveq1 | ⊢ ( 𝑁 = 0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ! ‘ ( 0 + 1 ) ) ) | |
| 21 | fveq2 | ⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = ( ! ‘ 0 ) ) | |
| 22 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 + 1 ) = ( 0 + 1 ) ) | |
| 23 | 21 22 | oveq12d | ⊢ ( 𝑁 = 0 → ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) = ( ( ! ‘ 0 ) · ( 0 + 1 ) ) ) |
| 24 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 25 | 24 16 | oveq12i | ⊢ ( ( ! ‘ 0 ) · ( 0 + 1 ) ) = ( 1 · 1 ) |
| 26 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 27 | 25 26 | eqtri | ⊢ ( ( ! ‘ 0 ) · ( 0 + 1 ) ) = 1 |
| 28 | 23 27 | eqtrdi | ⊢ ( 𝑁 = 0 → ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) = 1 ) |
| 29 | 19 20 28 | 3eqtr4a | ⊢ ( 𝑁 = 0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 30 | 15 29 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 31 | 1 30 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |