This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) | |
| 2 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) | |
| 3 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) | |
| 4 | 1 2 3 | pcpremul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) + sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
| 5 | 1 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 7 | 2 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 9 | 6 8 | oveq12d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) + sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
| 10 | zmulcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) | |
| 11 | 10 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℤ ) |
| 12 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 13 | 12 | anim1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 14 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 15 | 14 | anim1i | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 16 | mulne0 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) | |
| 17 | 13 15 16 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
| 18 | 11 17 | jca | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℤ ∧ ( 𝐴 · 𝐵 ) ≠ 0 ) ) |
| 19 | 3 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 · 𝐵 ) ∈ ℤ ∧ ( 𝐴 · 𝐵 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
| 20 | 18 19 | sylan2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
| 21 | 20 | 3impb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝐴 · 𝐵 ) } , ℝ , < ) ) |
| 22 | 4 9 21 | 3eqtr4rd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) + ( 𝑃 pCnt 𝐵 ) ) ) |