This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: P ^ A divides N if and only if A is at most the count of P . (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) | |
| 2 | 1 | breq2d | ⊢ ( 𝑁 = 0 → ( 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ↔ 𝐴 ≤ ( 𝑃 pCnt 0 ) ) ) |
| 3 | breq2 | ⊢ ( 𝑁 = 0 → ( ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝐴 ) ∥ 0 ) ) | |
| 4 | 2 3 | bibi12d | ⊢ ( 𝑁 = 0 → ( ( 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ↔ ( 𝐴 ≤ ( 𝑃 pCnt 0 ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ 0 ) ) ) |
| 5 | simpl3 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → 𝐴 ∈ ℕ0 ) | |
| 6 | 5 | nn0zd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → 𝐴 ∈ ℤ ) |
| 7 | simpl1 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → 𝑃 ∈ ℙ ) | |
| 8 | simpl2 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℤ ) | |
| 9 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → 𝑁 ≠ 0 ) | |
| 10 | pczcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) | |
| 11 | 7 8 9 10 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
| 12 | 11 | nn0zd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
| 13 | eluz | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ( ℤ≥ ‘ 𝐴 ) ↔ 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ) ) | |
| 14 | 6 12 13 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ( ℤ≥ ‘ 𝐴 ) ↔ 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ) ) |
| 15 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 16 | 7 15 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → 𝑃 ∈ ℕ ) |
| 17 | 16 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → 𝑃 ∈ ℤ ) |
| 18 | dvdsexp | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ∧ ( 𝑃 pCnt 𝑁 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) | |
| 19 | 18 | 3expia | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
| 20 | 17 5 19 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
| 21 | 14 20 | sylbird | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
| 22 | pczdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ) | |
| 23 | 7 8 9 22 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ) |
| 24 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) | |
| 25 | 15 24 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) |
| 27 | 26 | nnzd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
| 29 | 16 11 | nnexpcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℕ ) |
| 30 | 29 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℤ ) |
| 31 | dvdstr | ⊢ ( ( ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ) → ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) | |
| 32 | 28 30 8 31 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ) → ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 33 | 23 32 | mpan2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) → ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 34 | 21 33 | syld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) → ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 35 | nn0re | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( 𝑃 pCnt 𝑁 ) ∈ ℝ ) | |
| 36 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 37 | ltnle | ⊢ ( ( ( 𝑃 pCnt 𝑁 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑃 pCnt 𝑁 ) < 𝐴 ↔ ¬ 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ) ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝑁 ) < 𝐴 ↔ ¬ 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ) ) |
| 39 | nn0ltp1le | ⊢ ( ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝑁 ) < 𝐴 ↔ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ≤ 𝐴 ) ) | |
| 40 | 38 39 | bitr3d | ⊢ ( ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ∧ 𝐴 ∈ ℕ0 ) → ( ¬ 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ≤ 𝐴 ) ) |
| 41 | 11 5 40 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ¬ 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ≤ 𝐴 ) ) |
| 42 | peano2nn0 | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ( 𝑃 pCnt 𝑁 ) + 1 ) ∈ ℕ0 ) | |
| 43 | 11 42 | syl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 pCnt 𝑁 ) + 1 ) ∈ ℕ0 ) |
| 44 | 43 | nn0zd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 pCnt 𝑁 ) + 1 ) ∈ ℤ ) |
| 45 | eluz | ⊢ ( ( ( ( 𝑃 pCnt 𝑁 ) + 1 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ ( ℤ≥ ‘ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ↔ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ≤ 𝐴 ) ) | |
| 46 | 44 6 45 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝐴 ∈ ( ℤ≥ ‘ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ↔ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ≤ 𝐴 ) ) |
| 47 | dvdsexp | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) | |
| 48 | 47 | 3expia | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ∈ ℕ0 ) → ( 𝐴 ∈ ( ℤ≥ ‘ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 49 | 17 43 48 | syl2anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝐴 ∈ ( ℤ≥ ‘ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 50 | 46 49 | sylbird | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( ( 𝑃 pCnt 𝑁 ) + 1 ) ≤ 𝐴 → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 51 | pczndvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) | |
| 52 | 7 8 9 51 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) |
| 53 | 16 43 | nnexpcld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∈ ℕ ) |
| 54 | 53 | nnzd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∈ ℤ ) |
| 55 | dvdstr | ⊢ ( ( ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∈ ℤ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ∧ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) ) | |
| 56 | 54 28 8 55 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ∧ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ 𝑁 ) ) |
| 57 | 52 56 | mtod | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ¬ ( ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ∧ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 58 | imnan | ⊢ ( ( ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ¬ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ↔ ¬ ( ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) ∧ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) | |
| 59 | 57 58 | sylibr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑁 ) + 1 ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ¬ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 60 | 50 59 | syld | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ( ( 𝑃 pCnt 𝑁 ) + 1 ) ≤ 𝐴 → ¬ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 61 | 41 60 | sylbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( ¬ 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) → ¬ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 62 | 34 61 | impcon4bid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑁 ≠ 0 ) → ( 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |
| 63 | 36 | 3ad2ant3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 64 | 63 | rexrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ* ) |
| 65 | pnfge | ⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ +∞ ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ≤ +∞ ) |
| 67 | pc0 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) | |
| 68 | 67 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt 0 ) = +∞ ) |
| 69 | 66 68 | breqtrrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ≤ ( 𝑃 pCnt 0 ) ) |
| 70 | dvds0 | ⊢ ( ( 𝑃 ↑ 𝐴 ) ∈ ℤ → ( 𝑃 ↑ 𝐴 ) ∥ 0 ) | |
| 71 | 27 70 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∥ 0 ) |
| 72 | 69 71 | 2thd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt 0 ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ 0 ) ) |
| 73 | 4 62 72 | pm2.61ne | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ 𝑁 ) ) |