This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisors of a positive integer are bounded by it. The proof does not use / . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsle | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑁 < 𝑀 ↔ 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) | |
| 2 | oveq2 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · 𝑀 ) = ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) | |
| 3 | 2 | neeq1d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( ( 𝑛 · 𝑀 ) ≠ 𝑁 ↔ ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( ( 𝑁 < 𝑀 → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ↔ ( 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ) ) ) |
| 5 | breq1 | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) → ( 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ↔ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) | |
| 6 | neeq2 | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) → ( ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ↔ ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) → ( ( 𝑁 < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ 𝑁 ) ↔ ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑛 = if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) = ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ) | |
| 9 | 8 | neeq1d | ⊢ ( 𝑛 = if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) → ( ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ↔ ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑛 = if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) → ( ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( 𝑛 · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ↔ ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) ) ) |
| 11 | 1z | ⊢ 1 ∈ ℤ | |
| 12 | 11 | elimel | ⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ∈ ℤ |
| 13 | 1nn | ⊢ 1 ∈ ℕ | |
| 14 | 13 | elimel | ⊢ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ∈ ℕ |
| 15 | 11 | elimel | ⊢ if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) ∈ ℤ |
| 16 | 12 14 15 | dvdslelem | ⊢ ( if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) < if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) → ( if ( 𝑛 ∈ ℤ , 𝑛 , 1 ) · if ( 𝑀 ∈ ℤ , 𝑀 , 1 ) ) ≠ if ( 𝑁 ∈ ℕ , 𝑁 , 1 ) ) |
| 17 | 4 7 10 16 | dedth3h | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( 𝑁 < 𝑀 → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) |
| 18 | 17 | 3expia | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑛 ∈ ℤ → ( 𝑁 < 𝑀 → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) ) |
| 19 | 18 | com23 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 < 𝑀 → ( 𝑛 ∈ ℤ → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) ) |
| 20 | 19 | 3impia | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ( 𝑛 ∈ ℤ → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) ) |
| 21 | 20 | imp | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑀 ) ≠ 𝑁 ) |
| 22 | 21 | neneqd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) ∧ 𝑛 ∈ ℤ ) → ¬ ( 𝑛 · 𝑀 ) = 𝑁 ) |
| 23 | 22 | nrexdv | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ¬ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) |
| 24 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 25 | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) | |
| 26 | 24 25 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
| 27 | 26 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
| 28 | 23 27 | mtbird | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ¬ 𝑀 ∥ 𝑁 ) |
| 29 | 28 | 3expia | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 < 𝑀 → ¬ 𝑀 ∥ 𝑁 ) ) |
| 30 | 29 | con2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → ¬ 𝑁 < 𝑀 ) ) |
| 31 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 32 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 33 | lenlt | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) | |
| 34 | 31 32 33 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀 ) ) |
| 35 | 30 34 | sylibrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁 ) ) |