This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pcfac . (Contributed by Mario Carneiro, 20-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcfaclem | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 0 ≤ 𝑁 ) |
| 3 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
| 5 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℕ ) |
| 7 | eluznn0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ0 ) | |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑀 ∈ ℕ0 ) |
| 9 | 6 8 | nnexpcld | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℕ ) |
| 10 | 9 | nnred | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℝ ) |
| 11 | 9 | nngt0d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 0 < ( 𝑃 ↑ 𝑀 ) ) |
| 12 | ge0div | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑃 ↑ 𝑀 ) ∈ ℝ ∧ 0 < ( 𝑃 ↑ 𝑀 ) ) → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) ) | |
| 13 | 4 10 11 12 | syl3anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) ) |
| 14 | 2 13 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) |
| 15 | 8 | nn0red | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑀 ∈ ℝ ) |
| 16 | eluzle | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑀 ) | |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 ≤ 𝑀 ) |
| 18 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 20 | bernneq3 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 < ( 𝑃 ↑ 𝑀 ) ) | |
| 21 | 19 8 20 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑀 < ( 𝑃 ↑ 𝑀 ) ) |
| 22 | 4 15 10 17 21 | lelttrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 < ( 𝑃 ↑ 𝑀 ) ) |
| 23 | 9 | nncnd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) |
| 24 | 23 | mulridd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 ↑ 𝑀 ) · 1 ) = ( 𝑃 ↑ 𝑀 ) ) |
| 25 | 22 24 | breqtrrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 < ( ( 𝑃 ↑ 𝑀 ) · 1 ) ) |
| 26 | 1red | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 1 ∈ ℝ ) | |
| 27 | ltdivmul | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑃 ↑ 𝑀 ) ∈ ℝ ∧ 0 < ( 𝑃 ↑ 𝑀 ) ) ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < 1 ↔ 𝑁 < ( ( 𝑃 ↑ 𝑀 ) · 1 ) ) ) | |
| 28 | 4 26 10 11 27 | syl112anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < 1 ↔ 𝑁 < ( ( 𝑃 ↑ 𝑀 ) · 1 ) ) ) |
| 29 | 25 28 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < 1 ) |
| 30 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 31 | 29 30 | breqtrrdi | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < ( 0 + 1 ) ) |
| 32 | 4 9 | nndivred | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∈ ℝ ) |
| 33 | 0z | ⊢ 0 ∈ ℤ | |
| 34 | flbi | ⊢ ( ( ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) = 0 ↔ ( 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∧ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < ( 0 + 1 ) ) ) ) | |
| 35 | 32 33 34 | sylancl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) = 0 ↔ ( 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∧ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < ( 0 + 1 ) ) ) ) |
| 36 | 14 31 35 | mpbir2and | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) = 0 ) |