This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pc1 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 3 | eqid | ⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) | |
| 4 | 3 | pczpre | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 1 ∈ ℤ ∧ 1 ≠ 0 ) ) → ( 𝑃 pCnt 1 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) |
| 5 | 1 2 4 | mpanr12 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) |
| 6 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 7 | eqid | ⊢ 1 = 1 | |
| 8 | eqid | ⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } | |
| 9 | 8 3 | pcpre1 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 = 1 ) → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = 0 ) |
| 10 | 6 7 9 | sylancl | ⊢ ( 𝑃 ∈ ℙ → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = 0 ) |
| 11 | 5 10 | eqtrd | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |