This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmul.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplmul.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mplmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | ||
| mplmul.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| mplmul.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| mplmul.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | mplmul | ⊢ ( 𝜑 → ( 𝐹 ∙ 𝐺 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmul.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mplmul.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | mplmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | |
| 5 | mplmul.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 6 | mplmul.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | mplmul.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 10 | 1 8 4 | mplmulr | ⊢ ∙ = ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 11 | 1 8 2 9 | mplbasss | ⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 12 | 11 6 | sselid | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 13 | 11 7 | sselid | ⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 14 | 8 9 3 10 5 12 13 | psrmulfval | ⊢ ( 𝜑 → ( 𝐹 ∙ 𝐺 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |