This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| psrbagconf1o.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | ||
| Assertion | psrbagconcl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑋 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | psrbagconf1o.s | ⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } | |
| 3 | simpl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝐹 ∈ 𝐷 ) | |
| 4 | simpr | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 5 | breq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∘r ≤ 𝐹 ↔ 𝑋 ∘r ≤ 𝐹 ) ) | |
| 6 | 5 2 | elrab2 | ⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹 ) ) |
| 7 | 4 6 | sylib | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹 ) ) |
| 8 | 7 | simpld | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐷 ) |
| 9 | 1 | psrbagf | ⊢ ( 𝑋 ∈ 𝐷 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 11 | 7 | simprd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∘r ≤ 𝐹 ) |
| 12 | 1 | psrbagcon | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 : 𝐼 ⟶ ℕ0 ∧ 𝑋 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) |
| 13 | 3 10 11 12 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) |
| 14 | breq1 | ⊢ ( 𝑦 = ( 𝐹 ∘f − 𝑋 ) → ( 𝑦 ∘r ≤ 𝐹 ↔ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) | |
| 15 | 14 2 | elrab2 | ⊢ ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝑆 ↔ ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) |
| 16 | 13 15 | sylibr | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑋 ) ∈ 𝑆 ) |