This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3an.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl3an.2 | ⊢ ( 𝜒 → 𝜃 ) | ||
| syl3an.3 | ⊢ ( 𝜏 → 𝜂 ) | ||
| syl3an.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | ||
| Assertion | syl3an | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl3an.2 | ⊢ ( 𝜒 → 𝜃 ) | |
| 3 | syl3an.3 | ⊢ ( 𝜏 → 𝜂 ) | |
| 4 | syl3an.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | |
| 5 | 1 2 3 | 3anim123i | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) |
| 6 | 5 4 | syl | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |