This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997) (Revised by Mario Carneiro, 21-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) = 𝐶 ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) = 𝐶 ) ) |
| 4 | negeu | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) | |
| 5 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 + 𝑥 ) = ( 𝐵 + 𝐶 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 + 𝑥 ) = 𝐴 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) ) |
| 7 | 6 | riota2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) → ( ( 𝐵 + 𝐶 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) = 𝐶 ) ) |
| 8 | 4 7 | sylan2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ) → ( ( 𝐵 + 𝐶 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) = 𝐶 ) ) |
| 9 | 8 | 3impb | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) = 𝐶 ) ) |
| 10 | 9 | 3com13 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) = 𝐴 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐵 + 𝑥 ) = 𝐴 ) = 𝐶 ) ) |
| 11 | 3 10 | bitr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) ) |