This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Mario Carneiro, 25-Jan-2015) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbaglefi | ⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | df-rab | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) } | |
| 3 | 1 | psrbagf | ⊢ ( 𝑦 ∈ 𝐷 → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 4 | 3 | a1i | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝑦 ∈ 𝐷 → 𝑦 : 𝐼 ⟶ ℕ0 ) ) |
| 5 | 4 | adantrd | ⊢ ( 𝐹 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) → 𝑦 : 𝐼 ⟶ ℕ0 ) ) |
| 6 | ss2ixp | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ ℕ0 → X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ 𝐼 ℕ0 ) | |
| 7 | fz0ssnn0 | ⊢ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ ℕ0 | |
| 8 | 7 | a1i | ⊢ ( 𝑥 ∈ 𝐼 → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ ℕ0 ) |
| 9 | 6 8 | mprg | ⊢ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ 𝐼 ℕ0 |
| 10 | 9 | sseli | ⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ X 𝑥 ∈ 𝐼 ℕ0 ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | 11 | elixpconst | ⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ℕ0 ↔ 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 13 | 10 12 | sylib | ⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) → 𝑦 : 𝐼 ⟶ ℕ0 ) |
| 14 | 13 | a1i | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) → 𝑦 : 𝐼 ⟶ ℕ0 ) ) |
| 15 | ffn | ⊢ ( 𝑦 : 𝐼 ⟶ ℕ0 → 𝑦 Fn 𝐼 ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝑦 Fn 𝐼 ) |
| 17 | 11 | elixp | ⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 18 | 17 | baib | ⊢ ( 𝑦 Fn 𝐼 → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 20 | ffvelcdm | ⊢ ( ( 𝑦 : 𝐼 ⟶ ℕ0 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ℕ0 ) | |
| 21 | 20 | adantll | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ℕ0 ) |
| 22 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 23 | 21 22 | eleqtrdi | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 24 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 26 | 25 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℕ0 ) |
| 27 | 26 | nn0zd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 28 | elfz5 | ⊢ ( ( ( 𝑦 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) → ( ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 29 | 23 27 28 | syl2anc | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 | 29 | ralbidva | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 | 24 | ffnd | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝐹 Fn 𝐼 ) |
| 33 | 11 | a1i | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝑦 ∈ V ) |
| 34 | simpl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → 𝐹 ∈ 𝐷 ) | |
| 35 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 36 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑥 ) = ( 𝑦 ‘ 𝑥 ) ) | |
| 37 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 38 | 16 32 33 34 35 36 37 | ofrfvalg | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 | 30 38 | bitr4d | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ↔ 𝑦 ∘r ≤ 𝐹 ) ) |
| 40 | 1 | psrbaglecl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ∧ 𝑦 ∘r ≤ 𝐹 ) → 𝑦 ∈ 𝐷 ) |
| 41 | 40 | 3expia | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∘r ≤ 𝐹 → 𝑦 ∈ 𝐷 ) ) |
| 42 | 41 | pm4.71rd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( 𝑦 ∘r ≤ 𝐹 ↔ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ) ) |
| 43 | 19 39 42 | 3bitrrd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑦 : 𝐼 ⟶ ℕ0 ) → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ↔ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 44 | 43 | ex | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝑦 : 𝐼 ⟶ ℕ0 → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ↔ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 45 | 5 14 44 | pm5.21ndd | ⊢ ( 𝐹 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) ↔ 𝑦 ∈ X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 46 | 45 | eqabcdv | ⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∘r ≤ 𝐹 ) } = X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 | 2 46 | eqtrid | ⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } = X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ) |
| 48 | cnveq | ⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) | |
| 49 | 48 | imaeq1d | ⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝐹 “ ℕ ) ) |
| 50 | 49 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 51 | 50 1 | elrab2 | ⊢ ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 ∈ ( ℕ0 ↑m 𝐼 ) ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 52 | 51 | simprbi | ⊢ ( 𝐹 ∈ 𝐷 → ( ◡ 𝐹 “ ℕ ) ∈ Fin ) |
| 53 | fzfid | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ 𝐼 ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ∈ Fin ) | |
| 54 | fcdmnn0suppg | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) ) | |
| 55 | 24 54 | mpdan | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) ) |
| 56 | eqimss | ⊢ ( ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ℕ ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ℕ ) ) | |
| 57 | 55 56 | syl | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ℕ ) ) |
| 58 | id | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷 ) | |
| 59 | c0ex | ⊢ 0 ∈ V | |
| 60 | 59 | a1i | ⊢ ( 𝐹 ∈ 𝐷 → 0 ∈ V ) |
| 61 | 24 57 58 60 | suppssrg | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 62 | 61 | oveq2d | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) = ( 0 ... 0 ) ) |
| 63 | fz0sn | ⊢ ( 0 ... 0 ) = { 0 } | |
| 64 | 62 63 | eqtrdi | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) = { 0 } ) |
| 65 | eqimss | ⊢ ( ( 0 ... ( 𝐹 ‘ 𝑥 ) ) = { 0 } → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ { 0 } ) | |
| 66 | 64 65 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ◡ 𝐹 “ ℕ ) ) ) → ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ⊆ { 0 } ) |
| 67 | 52 53 66 | ixpfi2 | ⊢ ( 𝐹 ∈ 𝐷 → X 𝑥 ∈ 𝐼 ( 0 ... ( 𝐹 ‘ 𝑥 ) ) ∈ Fin ) |
| 68 | 47 67 | eqeltrd | ⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |