This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show membership in the span of the sum of two vectors, one of which ( Y ) is fixed in advance. (Contributed by NM, 27-May-2015) (Revised by AV, 12-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspfixed.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspfixed.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspfixed.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspfixed.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspfixed.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspfixed.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspfixed.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspfixed.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| lspfixed.f | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) | ||
| lspfixed.g | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | ||
| Assertion | lspfixed | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspfixed.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspfixed.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspfixed.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | lspfixed.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | lspfixed.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lspfixed.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspfixed.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 8 | lspfixed.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 9 | lspfixed.f | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) | |
| 10 | lspfixed.g | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 14 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 16 | 1 2 11 12 13 4 15 6 7 | lspprel | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 17 | 10 16 | mpbid | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 18 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LMod ) |
| 19 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 20 | 1 19 4 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 21 | 15 7 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 23 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LVec ) |
| 24 | 11 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 26 | simp2l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 27 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 28 | simpl3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) | |
| 29 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 30 | 29 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 31 | simpl1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝜑 ) | |
| 32 | 31 15 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 33 | 31 6 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 34 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 35 | 1 11 13 34 3 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
| 36 | 32 33 35 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
| 37 | 30 36 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
| 38 | 37 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 0 + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 39 | simp2r | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 40 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ∈ 𝑉 ) |
| 41 | 1 11 13 12 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 42 | 18 39 40 41 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 44 | 1 2 3 | lmod0vlid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( 0 + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 45 | 32 43 44 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 0 + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 46 | 28 38 45 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 47 | 31 21 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 48 | simpl2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 49 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 50 | 15 7 49 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 51 | 31 50 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 52 | 11 13 12 19 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 53 | 32 47 48 51 52 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 54 | 46 53 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 55 | 54 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 56 | 55 | necon3bd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 57 | 27 56 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 58 | eqid | ⊢ ( invr ‘ ( Scalar ‘ 𝑊 ) ) = ( invr ‘ ( Scalar ‘ 𝑊 ) ) | |
| 59 | 12 34 58 | drnginvrcl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 60 | 25 26 57 59 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 61 | 50 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 62 | 18 22 39 61 52 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 63 | 11 13 12 19 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 64 | 18 22 60 62 63 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 65 | 12 34 58 | drnginvrn0 | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 66 | 25 26 57 65 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 67 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 68 | simpl3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) | |
| 69 | oveq1 | ⊢ ( 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) | |
| 70 | 1 11 13 34 3 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 0 ) |
| 71 | 18 40 70 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 0 ) |
| 72 | 69 71 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 0 ) |
| 73 | 72 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) ) |
| 74 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 75 | 1 11 13 12 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 76 | 18 26 74 75 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 77 | 1 2 3 | lmod0vrid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 78 | 18 76 77 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 79 | 78 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 80 | 68 73 79 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 81 | 1 19 4 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 82 | 15 6 81 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 83 | 82 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 84 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 85 | 15 6 84 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 86 | 85 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 87 | 11 13 12 19 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 88 | 18 83 26 86 87 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 90 | 80 89 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 91 | 90 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 92 | 91 | necon3bd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑙 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 93 | 67 92 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑙 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 94 | simpl1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → 𝜑 ) | |
| 95 | 94 10 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 96 | preq2 | ⊢ ( 𝑍 = 0 → { 𝑌 , 𝑍 } = { 𝑌 , 0 } ) | |
| 97 | 96 | fveq2d | ⊢ ( 𝑍 = 0 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( 𝑁 ‘ { 𝑌 , 0 } ) ) |
| 98 | 1 3 4 18 74 | lsppr0 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑌 , 0 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 99 | 97 98 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 100 | 95 99 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 101 | 100 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑍 = 0 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 102 | 101 | necon3bd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑍 ≠ 0 ) ) |
| 103 | 67 102 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ≠ 0 ) |
| 104 | 1 13 11 12 34 3 23 39 40 | lvecvsn0 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ≠ 0 ↔ ( 𝑙 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ≠ 0 ) ) ) |
| 105 | 93 103 104 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ≠ 0 ) |
| 106 | 1 13 11 12 34 3 23 60 42 | lvecvsn0 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ≠ 0 ↔ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ≠ 0 ) ) ) |
| 107 | 66 105 106 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ≠ 0 ) |
| 108 | eldifsn | ⊢ ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) ↔ ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑍 } ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ≠ 0 ) ) | |
| 109 | 64 107 108 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) ) |
| 110 | simp3 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) | |
| 111 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
| 112 | 18 76 42 111 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
| 113 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
| 114 | 18 112 113 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
| 115 | 110 114 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
| 116 | 1 11 13 12 34 4 | lspsnvs | ⊢ ( ( 𝑊 ∈ LVec ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) = ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
| 117 | 23 60 66 112 116 | syl121anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) = ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
| 118 | 1 2 11 13 12 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 119 | 18 60 76 42 118 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 120 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 121 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 122 | 12 34 120 121 58 | drnginvrl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 123 | 25 26 57 122 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 124 | 123 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 125 | 1 11 13 12 120 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 126 | 18 60 26 74 125 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 127 | 1 11 13 121 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 128 | 18 74 127 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 129 | 124 126 128 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = 𝑌 ) |
| 130 | 129 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 131 | 119 130 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 132 | 131 | sneqd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } = { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) |
| 133 | 132 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) = ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
| 134 | 117 133 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) = ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
| 135 | 115 134 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
| 136 | oveq2 | ⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ( 𝑌 + 𝑧 ) = ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) | |
| 137 | 136 | sneqd | ⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → { ( 𝑌 + 𝑧 ) } = { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) |
| 138 | 137 | fveq2d | ⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) = ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
| 139 | 138 | eleq2d | ⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) ) |
| 140 | 139 | rspcev | ⊢ ( ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) ∧ 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) |
| 141 | 109 135 140 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) |
| 142 | 141 | 3exp | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) ) ) |
| 143 | 142 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) ) |
| 144 | 17 143 | mpd | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) |