This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar product with the ring unity. ( ax-hvmulid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvs1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvs1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvs1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvs1.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| Assertion | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvs1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvs1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmodvs1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmodvs1.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 5 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 7 | 2 6 4 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 9 | simpr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 12 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 13 | 1 10 3 2 6 11 12 4 | lmodlema | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1 · 𝑋 ) ∈ 𝑉 ∧ ( 1 · ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ∧ ( ( 1 ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ) ∧ ( ( ( 1 ( .r ‘ 𝐹 ) 1 ) · 𝑋 ) = ( 1 · ( 1 · 𝑋 ) ) ∧ ( 1 · 𝑋 ) = 𝑋 ) ) ) |
| 14 | 13 | simprrd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 15 | 5 8 8 9 9 14 | syl122anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |