This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 versus lspexchn2 ); look for lspexch and prcom in same proof. TODO: would a hypothesis of -. X e. ( N{ Z } ) instead of ( N{ X } ) =/= ( N{ Z } ) be better overall? This would be shorter and also satisfy the X =/= .0. condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the =/= pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspexch.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspexch.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspexch.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspexch.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspexch.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lspexch.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspexch.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspexch.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) | ||
| lspexch.e | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | ||
| Assertion | lspexch | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspexch.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspexch.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspexch.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspexch.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspexch.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 6 | lspexch.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspexch.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 8 | lspexch.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) | |
| 9 | lspexch.e | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 14 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 16 | 1 10 11 12 13 3 15 6 7 | lspprel | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ∃ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 17 | 9 16 | mpbid | ⊢ ( 𝜑 → ∃ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 18 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 19 | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) | |
| 20 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LVec ) |
| 21 | 20 14 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LMod ) |
| 22 | simp2r | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 23 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 24 | 23 | eldifad | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 25 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ∈ 𝑉 ) |
| 26 | 1 10 18 13 11 12 19 21 22 24 25 | lmodsubvs | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 27 | simp3 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) | |
| 28 | 27 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = 𝑋 ) |
| 29 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LMod ) |
| 30 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ Grp ) |
| 32 | 1 11 13 12 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 33 | 21 22 25 32 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 34 | simp2l | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 35 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 36 | 1 11 13 12 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 37 | 21 34 35 36 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 38 | 1 10 18 | grpsubadd | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑋 ∈ 𝑉 ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ∧ ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) ) → ( ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ↔ ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = 𝑋 ) ) |
| 39 | 31 24 33 37 38 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ↔ ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = 𝑋 ) ) |
| 40 | 28 39 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( -g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 41 | 26 40 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 42 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 43 | eqid | ⊢ ( invr ‘ ( Scalar ‘ 𝑊 ) ) = ( invr ‘ ( Scalar ‘ 𝑊 ) ) | |
| 44 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 45 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LVec ) |
| 46 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑍 ∈ 𝑉 ) |
| 47 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 48 | oveq1 | ⊢ ( 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) | |
| 49 | 48 | oveq1d | ⊢ ( 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 50 | 1 11 13 42 2 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
| 51 | 21 35 50 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
| 52 | 51 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 0 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 53 | 1 10 2 | lmod0vlid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( 0 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 54 | 21 33 53 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 0 ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 56 | 49 55 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 57 | 47 56 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
| 58 | 1 13 11 12 3 21 22 25 | ellspsni | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 60 | 57 59 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
| 61 | eldifsni | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) | |
| 62 | 23 61 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ≠ 0 ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ≠ 0 ) |
| 64 | 1 2 3 45 46 60 63 | lspsneleq | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
| 65 | 64 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑗 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 66 | 65 | necon3d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) → 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 67 | 44 66 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 68 | eldifsn | ⊢ ( 𝑗 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ↔ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 69 | 34 67 68 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑗 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 70 | 11 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 71 | 29 70 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 72 | 12 19 | grpinvcl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 73 | 71 22 72 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 74 | 1 11 13 12 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ 𝑉 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 75 | 21 73 25 74 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
| 76 | 1 10 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
| 77 | 21 24 75 76 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
| 78 | 1 13 11 12 42 43 20 69 77 35 | lvecinv | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ↔ 𝑌 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) ) |
| 79 | 41 78 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
| 80 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 81 | 1 80 3 21 24 25 | lspprcl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 82 | 11 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 83 | 20 82 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 84 | 12 42 43 | drnginvrcl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑗 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 85 | 83 34 67 84 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 86 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 87 | 1 11 13 86 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 88 | 21 24 87 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 𝑋 ) |
| 89 | 88 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
| 90 | 11 | lmodring | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 91 | 12 86 | ringidcl | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 92 | 21 90 91 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 93 | 1 10 13 11 12 3 21 92 73 24 25 | lsppreli | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 94 | 89 93 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 95 | 11 13 12 80 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 96 | 21 81 85 94 95 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑗 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 97 | 79 96 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 98 | 97 | 3exp | ⊢ ( 𝜑 → ( ( 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) ) |
| 99 | 98 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑗 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) |
| 100 | 17 99 | mpd | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |