This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product (left-distributivity). ( ax-hvdistr1 analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvsdi.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lmodvsdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvsdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvsdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvsdi.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lmodvsdi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lmodvsdi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lmodvsdi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 9 | 1 2 4 3 5 6 7 8 | lmodlema | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑅 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ∧ ( ( 𝑅 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) ∧ ( ( ( 𝑅 ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( 𝑅 · ( 𝑅 · 𝑋 ) ) ∧ ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ∧ ( ( 𝑅 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) ) |
| 11 | 10 | simp2d | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ) |
| 12 | 11 | 3expia | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) → ( ( 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ) ) |
| 13 | 12 | anabsan2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ) → ( ( 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ) ) |
| 14 | 13 | exp4b | ⊢ ( 𝑊 ∈ LMod → ( 𝑅 ∈ 𝐾 → ( 𝑌 ∈ 𝑉 → ( 𝑋 ∈ 𝑉 → ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ) ) ) ) |
| 15 | 14 | com34 | ⊢ ( 𝑊 ∈ LMod → ( 𝑅 ∈ 𝐾 → ( 𝑋 ∈ 𝑉 → ( 𝑌 ∈ 𝑉 → ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ) ) ) ) |
| 16 | 15 | 3imp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑅 · ( 𝑋 + 𝑌 ) ) = ( ( 𝑅 · 𝑋 ) + ( 𝑅 · 𝑌 ) ) ) |