This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero scalar product does not change the span of a singleton. ( spansncol analog.) (Contributed by NM, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnvs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnvs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lspsnvs.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsnvs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lspsnvs.o | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| lspsnvs.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsnvs | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnvs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnvs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lspsnvs.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lspsnvs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lspsnvs.o | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 6 | lspsnvs.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 7 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 9 | simp2l | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑅 ∈ 𝐾 ) | |
| 10 | simp3 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 11 | 2 4 1 3 6 | lspsnvsi | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 13 | 2 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ DivRing ) |
| 15 | simp2r | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑅 ≠ 0 ) | |
| 16 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 17 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 18 | eqid | ⊢ ( invr ‘ 𝐹 ) = ( invr ‘ 𝐹 ) | |
| 19 | 4 5 16 17 18 | drnginvrl | ⊢ ( ( 𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ( .r ‘ 𝐹 ) 𝑅 ) = ( 1r ‘ 𝐹 ) ) |
| 20 | 14 9 15 19 | syl3anc | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ( .r ‘ 𝐹 ) 𝑅 ) = ( 1r ‘ 𝐹 ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 1r ‘ 𝐹 ) · 𝑋 ) ) |
| 22 | 4 5 18 | drnginvrcl | ⊢ ( ( 𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ∈ 𝐾 ) |
| 23 | 14 9 15 22 | syl3anc | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ∈ 𝐾 ) |
| 24 | 1 2 3 4 16 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) · ( 𝑅 · 𝑋 ) ) ) |
| 25 | 8 23 9 10 24 | syl13anc | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) · ( 𝑅 · 𝑋 ) ) ) |
| 26 | 1 2 3 17 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 27 | 8 10 26 | syl2anc | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) |
| 28 | 21 25 27 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) · ( 𝑅 · 𝑋 ) ) = 𝑋 ) |
| 29 | 28 | sneqd | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → { ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) · ( 𝑅 · 𝑋 ) ) } = { 𝑋 } ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) · ( 𝑅 · 𝑋 ) ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 31 | 1 2 3 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
| 32 | 8 9 10 31 | syl3anc | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
| 33 | 2 4 1 3 6 | lspsnvsi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) ∈ 𝐾 ∧ ( 𝑅 · 𝑋 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) · ( 𝑅 · 𝑋 ) ) } ) ⊆ ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ) |
| 34 | 8 23 32 33 | syl3anc | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invr ‘ 𝐹 ) ‘ 𝑅 ) · ( 𝑅 · 𝑋 ) ) } ) ⊆ ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ) |
| 35 | 30 34 | eqsstrrd | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) ) |
| 36 | 12 35 | eqssd | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑅 · 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |