This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative inverse in a division ring is nonzero. ( recne0 analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drnginvrcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drnginvrcl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | drnginvrn0 | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drnginvrcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drnginvrcl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 4 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 5 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 6 | 5 3 | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 7 | 6 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
| 9 | 1 5 2 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
| 10 | 1 5 2 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝐼 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ≠ 0 ) ) ) |
| 11 | 8 9 10 | 3imtr3d | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ≠ 0 ) ) ) |
| 12 | 11 | 3impib | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ≠ 0 ) ) |
| 13 | 12 | simprd | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ≠ 0 ) |