This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppr0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsppr0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lsppr0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsppr0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsppr0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lsppr0 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppr0.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsppr0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lsppr0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lsppr0.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lsppr0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | eqid | ⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) | |
| 7 | 1 2 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
| 9 | 1 3 6 4 5 8 | lsmpr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 0 } ) ) ) |
| 10 | 2 3 | lspsn0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
| 12 | 11 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 0 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) ) |
| 13 | 1 3 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 15 | 2 6 | lsm01 | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) { 0 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 17 | 9 12 16 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 0 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |