This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right identity law for the zero vector. ( ax-hvaddid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0vlid.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 0vlid.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| 0vlid.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | lmod0vrid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + 0 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0vlid.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | 0vlid.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | 0vlid.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 5 | 1 2 3 | grprid | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 + 0 ) = 𝑋 ) |