This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar product is nonzero iff both of its factors are nonzero. (Contributed by NM, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecmul0or.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lvecmul0or.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lvecmul0or.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lvecmul0or.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lvecmul0or.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | ||
| lvecmul0or.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lvecmul0or.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lvecmul0or.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| lvecmul0or.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lvecvsn0 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ≠ 0 ↔ ( 𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecmul0or.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lvecmul0or.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lvecmul0or.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lvecmul0or.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lvecmul0or.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | |
| 6 | lvecmul0or.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 7 | lvecmul0or.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 8 | lvecmul0or.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 9 | lvecmul0or.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | lvecvs0or | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = 0 ↔ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |
| 11 | 10 | necon3abid | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ≠ 0 ↔ ¬ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) ) |
| 12 | neanior | ⊢ ( ( 𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ) ↔ ¬ ( 𝐴 = 𝑂 ∨ 𝑋 = 0 ) ) | |
| 13 | 11 12 | bitr4di | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ≠ 0 ↔ ( 𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ) ) ) |