This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the multiplicative inverse in a division ring. ( reccl analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drnginvrcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| drnginvrcl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | drnginvrcl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drnginvrcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | drnginvrcl.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 5 | 1 4 2 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
| 6 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 7 | 4 3 1 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 | 7 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 10 | 5 9 | sylbird | ⊢ ( 𝑅 ∈ DivRing → ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 11 | 10 | 3impib | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |