This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsppr.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lsppr.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lsppr.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lsppr.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lsppr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsppr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsppr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lsppr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspprel | ⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsppr.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lsppr.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lsppr.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lsppr.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lsppr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 7 | lsppr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 8 | lsppr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | lsppr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | lsppr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |
| 11 | 10 | eleq2d | ⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ 𝑍 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) ) |
| 12 | id | ⊢ ( 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) → 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) | |
| 13 | ovex | ⊢ ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ∈ V | |
| 14 | 12 13 | eqeltrdi | ⊢ ( 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) → 𝑍 ∈ V ) |
| 15 | 14 | rexlimivw | ⊢ ( ∃ 𝑙 ∈ 𝐾 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) → 𝑍 ∈ V ) |
| 16 | 15 | rexlimivw | ⊢ ( ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) → 𝑍 ∈ V ) |
| 17 | eqeq1 | ⊢ ( 𝑣 = 𝑍 → ( 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ↔ 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) ) | |
| 18 | 17 | 2rexbidv | ⊢ ( 𝑣 = 𝑍 → ( ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ↔ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) ) |
| 19 | 16 18 | elab3 | ⊢ ( 𝑍 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ↔ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) |
| 20 | 11 19 | bitrdi | ⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑍 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) ) |