This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show membership in the span of the sum of two vectors, one of which ( Y ) is fixed in advance. (Contributed by NM, 27-May-2015) (Revised by AV, 12-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspfixed.v | |- V = ( Base ` W ) |
|
| lspfixed.p | |- .+ = ( +g ` W ) |
||
| lspfixed.o | |- .0. = ( 0g ` W ) |
||
| lspfixed.n | |- N = ( LSpan ` W ) |
||
| lspfixed.w | |- ( ph -> W e. LVec ) |
||
| lspfixed.y | |- ( ph -> Y e. V ) |
||
| lspfixed.z | |- ( ph -> Z e. V ) |
||
| lspfixed.e | |- ( ph -> -. X e. ( N ` { Y } ) ) |
||
| lspfixed.f | |- ( ph -> -. X e. ( N ` { Z } ) ) |
||
| lspfixed.g | |- ( ph -> X e. ( N ` { Y , Z } ) ) |
||
| Assertion | lspfixed | |- ( ph -> E. z e. ( ( N ` { Z } ) \ { .0. } ) X e. ( N ` { ( Y .+ z ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspfixed.v | |- V = ( Base ` W ) |
|
| 2 | lspfixed.p | |- .+ = ( +g ` W ) |
|
| 3 | lspfixed.o | |- .0. = ( 0g ` W ) |
|
| 4 | lspfixed.n | |- N = ( LSpan ` W ) |
|
| 5 | lspfixed.w | |- ( ph -> W e. LVec ) |
|
| 6 | lspfixed.y | |- ( ph -> Y e. V ) |
|
| 7 | lspfixed.z | |- ( ph -> Z e. V ) |
|
| 8 | lspfixed.e | |- ( ph -> -. X e. ( N ` { Y } ) ) |
|
| 9 | lspfixed.f | |- ( ph -> -. X e. ( N ` { Z } ) ) |
|
| 10 | lspfixed.g | |- ( ph -> X e. ( N ` { Y , Z } ) ) |
|
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 13 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 14 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 15 | 5 14 | syl | |- ( ph -> W e. LMod ) |
| 16 | 1 2 11 12 13 4 15 6 7 | lspprel | |- ( ph -> ( X e. ( N ` { Y , Z } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) E. l e. ( Base ` ( Scalar ` W ) ) X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) ) |
| 17 | 10 16 | mpbid | |- ( ph -> E. k e. ( Base ` ( Scalar ` W ) ) E. l e. ( Base ` ( Scalar ` W ) ) X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) |
| 18 | 15 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> W e. LMod ) |
| 19 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 20 | 1 19 4 | lspsncl | |- ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 21 | 15 7 20 | syl2anc | |- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 22 | 21 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 23 | 5 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> W e. LVec ) |
| 24 | 11 | lvecdrng | |- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 25 | 23 24 | syl | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( Scalar ` W ) e. DivRing ) |
| 26 | simp2l | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
|
| 27 | 9 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> -. X e. ( N ` { Z } ) ) |
| 28 | simpl3 | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) |
|
| 29 | simpr | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> k = ( 0g ` ( Scalar ` W ) ) ) |
|
| 30 | 29 | oveq1d | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) Y ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) ) |
| 31 | simpl1 | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ph ) |
|
| 32 | 31 15 | syl | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> W e. LMod ) |
| 33 | 31 6 | syl | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Y e. V ) |
| 34 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 35 | 1 11 13 34 3 | lmod0vs | |- ( ( W e. LMod /\ Y e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) = .0. ) |
| 36 | 32 33 35 | syl2anc | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Y ) = .0. ) |
| 37 | 30 36 | eqtrd | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) Y ) = .0. ) |
| 38 | 37 | oveq1d | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) = ( .0. .+ ( l ( .s ` W ) Z ) ) ) |
| 39 | simp2r | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> l e. ( Base ` ( Scalar ` W ) ) ) |
|
| 40 | 7 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> Z e. V ) |
| 41 | 1 11 13 12 | lmodvscl | |- ( ( W e. LMod /\ l e. ( Base ` ( Scalar ` W ) ) /\ Z e. V ) -> ( l ( .s ` W ) Z ) e. V ) |
| 42 | 18 39 40 41 | syl3anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( l ( .s ` W ) Z ) e. V ) |
| 43 | 42 | adantr | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( l ( .s ` W ) Z ) e. V ) |
| 44 | 1 2 3 | lmod0vlid | |- ( ( W e. LMod /\ ( l ( .s ` W ) Z ) e. V ) -> ( .0. .+ ( l ( .s ` W ) Z ) ) = ( l ( .s ` W ) Z ) ) |
| 45 | 32 43 44 | syl2anc | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( .0. .+ ( l ( .s ` W ) Z ) ) = ( l ( .s ` W ) Z ) ) |
| 46 | 28 38 45 | 3eqtrd | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> X = ( l ( .s ` W ) Z ) ) |
| 47 | 31 21 | syl | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 48 | simpl2r | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> l e. ( Base ` ( Scalar ` W ) ) ) |
|
| 49 | 1 4 | lspsnid | |- ( ( W e. LMod /\ Z e. V ) -> Z e. ( N ` { Z } ) ) |
| 50 | 15 7 49 | syl2anc | |- ( ph -> Z e. ( N ` { Z } ) ) |
| 51 | 31 50 | syl | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> Z e. ( N ` { Z } ) ) |
| 52 | 11 13 12 19 | lssvscl | |- ( ( ( W e. LMod /\ ( N ` { Z } ) e. ( LSubSp ` W ) ) /\ ( l e. ( Base ` ( Scalar ` W ) ) /\ Z e. ( N ` { Z } ) ) ) -> ( l ( .s ` W ) Z ) e. ( N ` { Z } ) ) |
| 53 | 32 47 48 51 52 | syl22anc | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> ( l ( .s ` W ) Z ) e. ( N ` { Z } ) ) |
| 54 | 46 53 | eqeltrd | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ k = ( 0g ` ( Scalar ` W ) ) ) -> X e. ( N ` { Z } ) ) |
| 55 | 54 | ex | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( k = ( 0g ` ( Scalar ` W ) ) -> X e. ( N ` { Z } ) ) ) |
| 56 | 55 | necon3bd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( -. X e. ( N ` { Z } ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 57 | 27 56 | mpd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) |
| 58 | eqid | |- ( invr ` ( Scalar ` W ) ) = ( invr ` ( Scalar ` W ) ) |
|
| 59 | 12 34 58 | drnginvrcl | |- ( ( ( Scalar ` W ) e. DivRing /\ k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 60 | 25 26 57 59 | syl3anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) ) |
| 61 | 50 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> Z e. ( N ` { Z } ) ) |
| 62 | 18 22 39 61 52 | syl22anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( l ( .s ` W ) Z ) e. ( N ` { Z } ) ) |
| 63 | 11 13 12 19 | lssvscl | |- ( ( ( W e. LMod /\ ( N ` { Z } ) e. ( LSubSp ` W ) ) /\ ( ( ( invr ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( l ( .s ` W ) Z ) e. ( N ` { Z } ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) e. ( N ` { Z } ) ) |
| 64 | 18 22 60 62 63 | syl22anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) e. ( N ` { Z } ) ) |
| 65 | 12 34 58 | drnginvrn0 | |- ( ( ( Scalar ` W ) e. DivRing /\ k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` k ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 66 | 25 26 57 65 | syl3anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( invr ` ( Scalar ` W ) ) ` k ) =/= ( 0g ` ( Scalar ` W ) ) ) |
| 67 | 8 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> -. X e. ( N ` { Y } ) ) |
| 68 | simpl3 | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ l = ( 0g ` ( Scalar ` W ) ) ) -> X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) |
|
| 69 | oveq1 | |- ( l = ( 0g ` ( Scalar ` W ) ) -> ( l ( .s ` W ) Z ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Z ) ) |
|
| 70 | 1 11 13 34 3 | lmod0vs | |- ( ( W e. LMod /\ Z e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Z ) = .0. ) |
| 71 | 18 40 70 | syl2anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) Z ) = .0. ) |
| 72 | 69 71 | sylan9eqr | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ l = ( 0g ` ( Scalar ` W ) ) ) -> ( l ( .s ` W ) Z ) = .0. ) |
| 73 | 72 | oveq2d | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ l = ( 0g ` ( Scalar ` W ) ) ) -> ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) = ( ( k ( .s ` W ) Y ) .+ .0. ) ) |
| 74 | 6 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> Y e. V ) |
| 75 | 1 11 13 12 | lmodvscl | |- ( ( W e. LMod /\ k e. ( Base ` ( Scalar ` W ) ) /\ Y e. V ) -> ( k ( .s ` W ) Y ) e. V ) |
| 76 | 18 26 74 75 | syl3anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( k ( .s ` W ) Y ) e. V ) |
| 77 | 1 2 3 | lmod0vrid | |- ( ( W e. LMod /\ ( k ( .s ` W ) Y ) e. V ) -> ( ( k ( .s ` W ) Y ) .+ .0. ) = ( k ( .s ` W ) Y ) ) |
| 78 | 18 76 77 | syl2anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( k ( .s ` W ) Y ) .+ .0. ) = ( k ( .s ` W ) Y ) ) |
| 79 | 78 | adantr | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ l = ( 0g ` ( Scalar ` W ) ) ) -> ( ( k ( .s ` W ) Y ) .+ .0. ) = ( k ( .s ` W ) Y ) ) |
| 80 | 68 73 79 | 3eqtrd | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ l = ( 0g ` ( Scalar ` W ) ) ) -> X = ( k ( .s ` W ) Y ) ) |
| 81 | 1 19 4 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 82 | 15 6 81 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 83 | 82 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 84 | 1 4 | lspsnid | |- ( ( W e. LMod /\ Y e. V ) -> Y e. ( N ` { Y } ) ) |
| 85 | 15 6 84 | syl2anc | |- ( ph -> Y e. ( N ` { Y } ) ) |
| 86 | 85 | 3ad2ant1 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> Y e. ( N ` { Y } ) ) |
| 87 | 11 13 12 19 | lssvscl | |- ( ( ( W e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` W ) ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ Y e. ( N ` { Y } ) ) ) -> ( k ( .s ` W ) Y ) e. ( N ` { Y } ) ) |
| 88 | 18 83 26 86 87 | syl22anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( k ( .s ` W ) Y ) e. ( N ` { Y } ) ) |
| 89 | 88 | adantr | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ l = ( 0g ` ( Scalar ` W ) ) ) -> ( k ( .s ` W ) Y ) e. ( N ` { Y } ) ) |
| 90 | 80 89 | eqeltrd | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ l = ( 0g ` ( Scalar ` W ) ) ) -> X e. ( N ` { Y } ) ) |
| 91 | 90 | ex | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( l = ( 0g ` ( Scalar ` W ) ) -> X e. ( N ` { Y } ) ) ) |
| 92 | 91 | necon3bd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( -. X e. ( N ` { Y } ) -> l =/= ( 0g ` ( Scalar ` W ) ) ) ) |
| 93 | 67 92 | mpd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> l =/= ( 0g ` ( Scalar ` W ) ) ) |
| 94 | simpl1 | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ Z = .0. ) -> ph ) |
|
| 95 | 94 10 | syl | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ Z = .0. ) -> X e. ( N ` { Y , Z } ) ) |
| 96 | preq2 | |- ( Z = .0. -> { Y , Z } = { Y , .0. } ) |
|
| 97 | 96 | fveq2d | |- ( Z = .0. -> ( N ` { Y , Z } ) = ( N ` { Y , .0. } ) ) |
| 98 | 1 3 4 18 74 | lsppr0 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( N ` { Y , .0. } ) = ( N ` { Y } ) ) |
| 99 | 97 98 | sylan9eqr | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ Z = .0. ) -> ( N ` { Y , Z } ) = ( N ` { Y } ) ) |
| 100 | 95 99 | eleqtrd | |- ( ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) /\ Z = .0. ) -> X e. ( N ` { Y } ) ) |
| 101 | 100 | ex | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( Z = .0. -> X e. ( N ` { Y } ) ) ) |
| 102 | 101 | necon3bd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( -. X e. ( N ` { Y } ) -> Z =/= .0. ) ) |
| 103 | 67 102 | mpd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> Z =/= .0. ) |
| 104 | 1 13 11 12 34 3 23 39 40 | lvecvsn0 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( l ( .s ` W ) Z ) =/= .0. <-> ( l =/= ( 0g ` ( Scalar ` W ) ) /\ Z =/= .0. ) ) ) |
| 105 | 93 103 104 | mpbir2and | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( l ( .s ` W ) Z ) =/= .0. ) |
| 106 | 1 13 11 12 34 3 23 60 42 | lvecvsn0 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) =/= .0. <-> ( ( ( invr ` ( Scalar ` W ) ) ` k ) =/= ( 0g ` ( Scalar ` W ) ) /\ ( l ( .s ` W ) Z ) =/= .0. ) ) ) |
| 107 | 66 105 106 | mpbir2and | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) =/= .0. ) |
| 108 | eldifsn | |- ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) e. ( ( N ` { Z } ) \ { .0. } ) <-> ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) e. ( N ` { Z } ) /\ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) =/= .0. ) ) |
|
| 109 | 64 107 108 | sylanbrc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) e. ( ( N ` { Z } ) \ { .0. } ) ) |
| 110 | simp3 | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) |
|
| 111 | 1 2 | lmodvacl | |- ( ( W e. LMod /\ ( k ( .s ` W ) Y ) e. V /\ ( l ( .s ` W ) Z ) e. V ) -> ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) e. V ) |
| 112 | 18 76 42 111 | syl3anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) e. V ) |
| 113 | 1 4 | lspsnid | |- ( ( W e. LMod /\ ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) e. V ) -> ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) e. ( N ` { ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) } ) ) |
| 114 | 18 112 113 | syl2anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) e. ( N ` { ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) } ) ) |
| 115 | 110 114 | eqeltrd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> X e. ( N ` { ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) } ) ) |
| 116 | 1 11 13 12 34 4 | lspsnvs | |- ( ( W e. LVec /\ ( ( ( invr ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( invr ` ( Scalar ` W ) ) ` k ) =/= ( 0g ` ( Scalar ` W ) ) ) /\ ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) e. V ) -> ( N ` { ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) } ) = ( N ` { ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) } ) ) |
| 117 | 23 60 66 112 116 | syl121anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( N ` { ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) } ) = ( N ` { ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) } ) ) |
| 118 | 1 2 11 13 12 | lmodvsdi | |- ( ( W e. LMod /\ ( ( ( invr ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) /\ ( k ( .s ` W ) Y ) e. V /\ ( l ( .s ` W ) Z ) e. V ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) = ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( k ( .s ` W ) Y ) ) .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) ) |
| 119 | 18 60 76 42 118 | syl13anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) = ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( k ( .s ` W ) Y ) ) .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) ) |
| 120 | eqid | |- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
|
| 121 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 122 | 12 34 120 121 58 | drnginvrl | |- ( ( ( Scalar ` W ) e. DivRing /\ k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .r ` ( Scalar ` W ) ) k ) = ( 1r ` ( Scalar ` W ) ) ) |
| 123 | 25 26 57 122 | syl3anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .r ` ( Scalar ` W ) ) k ) = ( 1r ` ( Scalar ` W ) ) ) |
| 124 | 123 | oveq1d | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .r ` ( Scalar ` W ) ) k ) ( .s ` W ) Y ) = ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) Y ) ) |
| 125 | 1 11 13 12 120 | lmodvsass | |- ( ( W e. LMod /\ ( ( ( invr ` ( Scalar ` W ) ) ` k ) e. ( Base ` ( Scalar ` W ) ) /\ k e. ( Base ` ( Scalar ` W ) ) /\ Y e. V ) ) -> ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .r ` ( Scalar ` W ) ) k ) ( .s ` W ) Y ) = ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( k ( .s ` W ) Y ) ) ) |
| 126 | 18 60 26 74 125 | syl13anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .r ` ( Scalar ` W ) ) k ) ( .s ` W ) Y ) = ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( k ( .s ` W ) Y ) ) ) |
| 127 | 1 11 13 121 | lmodvs1 | |- ( ( W e. LMod /\ Y e. V ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) Y ) = Y ) |
| 128 | 18 74 127 | syl2anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) Y ) = Y ) |
| 129 | 124 126 128 | 3eqtr3d | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( k ( .s ` W ) Y ) ) = Y ) |
| 130 | 129 | oveq1d | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( k ( .s ` W ) Y ) ) .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) = ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) ) |
| 131 | 119 130 | eqtrd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) = ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) ) |
| 132 | 131 | sneqd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> { ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) } = { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) |
| 133 | 132 | fveq2d | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( N ` { ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) } ) = ( N ` { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) ) |
| 134 | 117 133 | eqtr3d | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> ( N ` { ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) } ) = ( N ` { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) ) |
| 135 | 115 134 | eleqtrd | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> X e. ( N ` { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) ) |
| 136 | oveq2 | |- ( z = ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) -> ( Y .+ z ) = ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) ) |
|
| 137 | 136 | sneqd | |- ( z = ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) -> { ( Y .+ z ) } = { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) |
| 138 | 137 | fveq2d | |- ( z = ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) -> ( N ` { ( Y .+ z ) } ) = ( N ` { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) ) |
| 139 | 138 | eleq2d | |- ( z = ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) -> ( X e. ( N ` { ( Y .+ z ) } ) <-> X e. ( N ` { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) ) ) |
| 140 | 139 | rspcev | |- ( ( ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) e. ( ( N ` { Z } ) \ { .0. } ) /\ X e. ( N ` { ( Y .+ ( ( ( invr ` ( Scalar ` W ) ) ` k ) ( .s ` W ) ( l ( .s ` W ) Z ) ) ) } ) ) -> E. z e. ( ( N ` { Z } ) \ { .0. } ) X e. ( N ` { ( Y .+ z ) } ) ) |
| 141 | 109 135 140 | syl2anc | |- ( ( ph /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) /\ X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) ) -> E. z e. ( ( N ` { Z } ) \ { .0. } ) X e. ( N ` { ( Y .+ z ) } ) ) |
| 142 | 141 | 3exp | |- ( ph -> ( ( k e. ( Base ` ( Scalar ` W ) ) /\ l e. ( Base ` ( Scalar ` W ) ) ) -> ( X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) -> E. z e. ( ( N ` { Z } ) \ { .0. } ) X e. ( N ` { ( Y .+ z ) } ) ) ) ) |
| 143 | 142 | rexlimdvv | |- ( ph -> ( E. k e. ( Base ` ( Scalar ` W ) ) E. l e. ( Base ` ( Scalar ` W ) ) X = ( ( k ( .s ` W ) Y ) .+ ( l ( .s ` W ) Z ) ) -> E. z e. ( ( N ` { Z } ) \ { .0. } ) X e. ( N ` { ( Y .+ z ) } ) ) ) |
| 144 | 17 143 | mpd | |- ( ph -> E. z e. ( ( N ` { Z } ) \ { .0. } ) X e. ( N ` { ( Y .+ z ) } ) ) |