This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Using the Taylor series for arctan ( _i / 3 ) , produce a rapidly convergent series for log 2 . (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | log2cnv.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) | |
| Assertion | log2cnv | ⊢ seq 0 ( + , 𝐹 ) ⇝ ( log ‘ 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2cnv.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) | |
| 2 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 3 | 0zd | ⊢ ( ⊤ → 0 ∈ ℤ ) | |
| 4 | 2cn | ⊢ 2 ∈ ℂ | |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | ine0 | ⊢ i ≠ 0 | |
| 7 | 4 5 6 | divcli | ⊢ ( 2 / i ) ∈ ℂ |
| 8 | 7 | a1i | ⊢ ( ⊤ → ( 2 / i ) ∈ ℂ ) |
| 9 | 3cn | ⊢ 3 ∈ ℂ | |
| 10 | 3ne0 | ⊢ 3 ≠ 0 | |
| 11 | 5 9 10 | divcli | ⊢ ( i / 3 ) ∈ ℂ |
| 12 | absdiv | ⊢ ( ( i ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( abs ‘ ( i / 3 ) ) = ( ( abs ‘ i ) / ( abs ‘ 3 ) ) ) | |
| 13 | 5 9 10 12 | mp3an | ⊢ ( abs ‘ ( i / 3 ) ) = ( ( abs ‘ i ) / ( abs ‘ 3 ) ) |
| 14 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 15 | 3re | ⊢ 3 ∈ ℝ | |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | 3pos | ⊢ 0 < 3 | |
| 18 | 16 15 17 | ltleii | ⊢ 0 ≤ 3 |
| 19 | absid | ⊢ ( ( 3 ∈ ℝ ∧ 0 ≤ 3 ) → ( abs ‘ 3 ) = 3 ) | |
| 20 | 15 18 19 | mp2an | ⊢ ( abs ‘ 3 ) = 3 |
| 21 | 14 20 | oveq12i | ⊢ ( ( abs ‘ i ) / ( abs ‘ 3 ) ) = ( 1 / 3 ) |
| 22 | 13 21 | eqtri | ⊢ ( abs ‘ ( i / 3 ) ) = ( 1 / 3 ) |
| 23 | 1lt3 | ⊢ 1 < 3 | |
| 24 | recgt1 | ⊢ ( ( 3 ∈ ℝ ∧ 0 < 3 ) → ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) ) | |
| 25 | 15 17 24 | mp2an | ⊢ ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) |
| 26 | 23 25 | mpbi | ⊢ ( 1 / 3 ) < 1 |
| 27 | 22 26 | eqbrtri | ⊢ ( abs ‘ ( i / 3 ) ) < 1 |
| 28 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 29 | 28 | atantayl3 | ⊢ ( ( ( i / 3 ) ∈ ℂ ∧ ( abs ‘ ( i / 3 ) ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ ( i / 3 ) ) ) |
| 30 | 11 27 29 | mp2an | ⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ ( i / 3 ) ) |
| 31 | 30 | a1i | ⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ ( i / 3 ) ) ) |
| 32 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( - 1 ↑ 𝑛 ) = ( - 1 ↑ 𝑘 ) ) | |
| 33 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 36 | 35 34 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 37 | 32 36 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 38 | ovex | ⊢ ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ V | |
| 39 | 37 28 38 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 40 | 5 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → i ∈ ℂ ) |
| 41 | 9 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 3 ∈ ℂ ) |
| 42 | 10 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 3 ≠ 0 ) |
| 43 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 44 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) | |
| 45 | 43 44 | mpan | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℕ0 ) |
| 46 | peano2nn0 | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) | |
| 47 | 45 46 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
| 48 | 40 41 42 47 | expdivd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 49 | 48 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 50 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 51 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) | |
| 52 | 50 51 | mpan | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
| 53 | expcl | ⊢ ( ( i ∈ ℂ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) | |
| 54 | 5 47 53 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 55 | 3nn | ⊢ 3 ∈ ℕ | |
| 56 | nnexpcl | ⊢ ( ( 3 ∈ ℕ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) | |
| 57 | 55 47 56 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) |
| 58 | 57 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 59 | 57 | nnne0d | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ≠ 0 ) |
| 60 | 52 54 58 59 | divassd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 61 | expp1 | ⊢ ( ( i ∈ ℂ ∧ ( 2 · 𝑘 ) ∈ ℕ0 ) → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i ↑ ( 2 · 𝑘 ) ) · i ) ) | |
| 62 | 5 45 61 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i ↑ ( 2 · 𝑘 ) ) · i ) ) |
| 63 | expmul | ⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ ( 2 · 𝑘 ) ) = ( ( i ↑ 2 ) ↑ 𝑘 ) ) | |
| 64 | 5 43 63 | mp3an12 | ⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( 2 · 𝑘 ) ) = ( ( i ↑ 2 ) ↑ 𝑘 ) ) |
| 65 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 66 | 65 | oveq1i | ⊢ ( ( i ↑ 2 ) ↑ 𝑘 ) = ( - 1 ↑ 𝑘 ) |
| 67 | 64 66 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( 2 · 𝑘 ) ) = ( - 1 ↑ 𝑘 ) ) |
| 68 | 67 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( i ↑ ( 2 · 𝑘 ) ) · i ) = ( ( - 1 ↑ 𝑘 ) · i ) ) |
| 69 | 62 68 | eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( - 1 ↑ 𝑘 ) · i ) ) |
| 70 | 69 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( - 1 ↑ 𝑘 ) · i ) ) ) |
| 71 | 52 52 40 | mulassd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) · i ) = ( ( - 1 ↑ 𝑘 ) · ( ( - 1 ↑ 𝑘 ) · i ) ) ) |
| 72 | 50 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → - 1 ∈ ℂ ) |
| 73 | id | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0 ) | |
| 74 | 72 73 73 | expaddd | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 𝑘 + 𝑘 ) ) = ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) ) |
| 75 | expmul | ⊢ ( ( - 1 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑘 ) ) | |
| 76 | 50 43 75 | mp3an12 | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑘 ) ) |
| 77 | neg1sqe1 | ⊢ ( - 1 ↑ 2 ) = 1 | |
| 78 | 77 | oveq1i | ⊢ ( ( - 1 ↑ 2 ) ↑ 𝑘 ) = ( 1 ↑ 𝑘 ) |
| 79 | 76 78 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( 1 ↑ 𝑘 ) ) |
| 80 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 81 | 80 | 2timesd | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) = ( 𝑘 + 𝑘 ) ) |
| 82 | 81 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( - 1 ↑ ( 𝑘 + 𝑘 ) ) ) |
| 83 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 84 | 1exp | ⊢ ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 ) | |
| 85 | 83 84 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 ↑ 𝑘 ) = 1 ) |
| 86 | 79 82 85 | 3eqtr3d | ⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 𝑘 + 𝑘 ) ) = 1 ) |
| 87 | 74 86 | eqtr3d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) = 1 ) |
| 88 | 87 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) · i ) = ( 1 · i ) ) |
| 89 | 5 | mullidi | ⊢ ( 1 · i ) = i |
| 90 | 88 89 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) · i ) = i ) |
| 91 | 70 71 90 | 3eqtr2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = i ) |
| 92 | 91 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 93 | 49 60 92 | 3eqtr2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 94 | 93 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 95 | expcl | ⊢ ( ( ( i / 3 ) ∈ ℂ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) | |
| 96 | 11 47 95 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 97 | nn0p1nn | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) | |
| 98 | 45 97 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 99 | 98 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 100 | 98 | nnne0d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
| 101 | 52 96 99 100 | divassd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 102 | 40 58 99 59 100 | divdiv1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( i / ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 103 | 94 101 102 | 3eqtr3d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 104 | 58 99 | mulcomd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 105 | 104 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 106 | 39 103 105 | 3eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( i / ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 107 | 98 57 | nnmulcld | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℕ ) |
| 108 | 107 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 109 | 107 | nnne0d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ≠ 0 ) |
| 110 | 40 108 109 | divcld | ⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ∈ ℂ ) |
| 111 | 106 110 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 112 | 111 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 113 | 34 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) = ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 114 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 9 ↑ 𝑛 ) = ( 9 ↑ 𝑘 ) ) | |
| 115 | 113 114 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) = ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) |
| 116 | 115 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
| 117 | ovex | ⊢ ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ∈ V | |
| 118 | 116 1 117 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
| 119 | expp1 | ⊢ ( ( 3 ∈ ℂ ∧ ( 2 · 𝑘 ) ∈ ℕ0 ) → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 3 ↑ ( 2 · 𝑘 ) ) · 3 ) ) | |
| 120 | 9 45 119 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 3 ↑ ( 2 · 𝑘 ) ) · 3 ) ) |
| 121 | expmul | ⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 3 ↑ ( 2 · 𝑘 ) ) = ( ( 3 ↑ 2 ) ↑ 𝑘 ) ) | |
| 122 | 9 43 121 | mp3an12 | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( 2 · 𝑘 ) ) = ( ( 3 ↑ 2 ) ↑ 𝑘 ) ) |
| 123 | sq3 | ⊢ ( 3 ↑ 2 ) = 9 | |
| 124 | 123 | oveq1i | ⊢ ( ( 3 ↑ 2 ) ↑ 𝑘 ) = ( 9 ↑ 𝑘 ) |
| 125 | 122 124 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( 2 · 𝑘 ) ) = ( 9 ↑ 𝑘 ) ) |
| 126 | 125 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 ↑ ( 2 · 𝑘 ) ) · 3 ) = ( ( 9 ↑ 𝑘 ) · 3 ) ) |
| 127 | 9nn | ⊢ 9 ∈ ℕ | |
| 128 | nnexpcl | ⊢ ( ( 9 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 9 ↑ 𝑘 ) ∈ ℕ ) | |
| 129 | 127 128 | mpan | ⊢ ( 𝑘 ∈ ℕ0 → ( 9 ↑ 𝑘 ) ∈ ℕ ) |
| 130 | 129 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( 9 ↑ 𝑘 ) ∈ ℂ ) |
| 131 | mulcom | ⊢ ( ( ( 9 ↑ 𝑘 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 9 ↑ 𝑘 ) · 3 ) = ( 3 · ( 9 ↑ 𝑘 ) ) ) | |
| 132 | 130 9 131 | sylancl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 9 ↑ 𝑘 ) · 3 ) = ( 3 · ( 9 ↑ 𝑘 ) ) ) |
| 133 | 120 126 132 | 3eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( 3 · ( 9 ↑ 𝑘 ) ) ) |
| 134 | 91 133 | oveq12d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) ) |
| 135 | 49 60 134 | 3eqtr2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) ) |
| 136 | 135 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 137 | nnmulcl | ⊢ ( ( 3 ∈ ℕ ∧ ( 9 ↑ 𝑘 ) ∈ ℕ ) → ( 3 · ( 9 ↑ 𝑘 ) ) ∈ ℕ ) | |
| 138 | 55 129 137 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( 9 ↑ 𝑘 ) ) ∈ ℕ ) |
| 139 | 138 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( 9 ↑ 𝑘 ) ) ∈ ℂ ) |
| 140 | 138 | nnne0d | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( 9 ↑ 𝑘 ) ) ≠ 0 ) |
| 141 | 40 139 99 140 100 | divdiv1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( i / ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 142 | 136 101 141 | 3eqtr3d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 143 | 41 130 99 | mul32d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) |
| 144 | 143 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
| 145 | 39 142 144 | 3eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
| 146 | 145 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( 2 / i ) · ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) ) |
| 147 | nnmulcl | ⊢ ( ( 3 ∈ ℕ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) → ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) | |
| 148 | 55 98 147 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) |
| 149 | 148 129 | nnmulcld | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ∈ ℕ ) |
| 150 | 149 | nncnd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ∈ ℂ ) |
| 151 | 149 | nnne0d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ≠ 0 ) |
| 152 | 40 150 151 | divcld | ⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 153 | mulcom | ⊢ ( ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ∈ ℂ ∧ ( 2 / i ) ∈ ℂ ) → ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) · ( 2 / i ) ) = ( ( 2 / i ) · ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) ) | |
| 154 | 152 7 153 | sylancl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) · ( 2 / i ) ) = ( ( 2 / i ) · ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) ) |
| 155 | 4 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℂ ) |
| 156 | 6 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → i ≠ 0 ) |
| 157 | 155 40 150 156 151 | dmdcand | ⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) · ( 2 / i ) ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
| 158 | 146 154 157 | 3eqtr2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
| 159 | 118 158 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
| 160 | 159 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
| 161 | 2 3 8 31 112 160 | isermulc2 | ⊢ ( ⊤ → seq 0 ( + , 𝐹 ) ⇝ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) ) |
| 162 | 161 | mptru | ⊢ seq 0 ( + , 𝐹 ) ⇝ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) |
| 163 | bndatandm | ⊢ ( ( ( i / 3 ) ∈ ℂ ∧ ( abs ‘ ( i / 3 ) ) < 1 ) → ( i / 3 ) ∈ dom arctan ) | |
| 164 | 11 27 163 | mp2an | ⊢ ( i / 3 ) ∈ dom arctan |
| 165 | atanval | ⊢ ( ( i / 3 ) ∈ dom arctan → ( arctan ‘ ( i / 3 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) ) ) | |
| 166 | 164 165 | ax-mp | ⊢ ( arctan ‘ ( i / 3 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) ) |
| 167 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 168 | 167 | oveq1i | ⊢ ( 4 / 3 ) = ( ( 3 + 1 ) / 3 ) |
| 169 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 170 | 9 169 9 10 | divdiri | ⊢ ( ( 3 + 1 ) / 3 ) = ( ( 3 / 3 ) + ( 1 / 3 ) ) |
| 171 | 9 10 | dividi | ⊢ ( 3 / 3 ) = 1 |
| 172 | 171 | oveq1i | ⊢ ( ( 3 / 3 ) + ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 173 | 168 170 172 | 3eqtri | ⊢ ( 4 / 3 ) = ( 1 + ( 1 / 3 ) ) |
| 174 | 169 9 10 | divcli | ⊢ ( 1 / 3 ) ∈ ℂ |
| 175 | 169 174 | subnegi | ⊢ ( 1 − - ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 176 | divneg | ⊢ ( ( 1 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → - ( 1 / 3 ) = ( - 1 / 3 ) ) | |
| 177 | 169 9 10 176 | mp3an | ⊢ - ( 1 / 3 ) = ( - 1 / 3 ) |
| 178 | ixi | ⊢ ( i · i ) = - 1 | |
| 179 | 178 | oveq1i | ⊢ ( ( i · i ) / 3 ) = ( - 1 / 3 ) |
| 180 | 5 5 9 10 | divassi | ⊢ ( ( i · i ) / 3 ) = ( i · ( i / 3 ) ) |
| 181 | 177 179 180 | 3eqtr2i | ⊢ - ( 1 / 3 ) = ( i · ( i / 3 ) ) |
| 182 | 181 | oveq2i | ⊢ ( 1 − - ( 1 / 3 ) ) = ( 1 − ( i · ( i / 3 ) ) ) |
| 183 | 173 175 182 | 3eqtr2ri | ⊢ ( 1 − ( i · ( i / 3 ) ) ) = ( 4 / 3 ) |
| 184 | 183 | fveq2i | ⊢ ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) = ( log ‘ ( 4 / 3 ) ) |
| 185 | 9 10 | pm3.2i | ⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 186 | divsubdir | ⊢ ( ( 3 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) ) | |
| 187 | 9 169 185 186 | mp3an | ⊢ ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) |
| 188 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 189 | 188 | oveq1i | ⊢ ( ( 3 − 1 ) / 3 ) = ( 2 / 3 ) |
| 190 | 171 | oveq1i | ⊢ ( ( 3 / 3 ) − ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
| 191 | 187 189 190 | 3eqtr3i | ⊢ ( 2 / 3 ) = ( 1 − ( 1 / 3 ) ) |
| 192 | 169 174 | negsubi | ⊢ ( 1 + - ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
| 193 | 181 | oveq2i | ⊢ ( 1 + - ( 1 / 3 ) ) = ( 1 + ( i · ( i / 3 ) ) ) |
| 194 | 191 192 193 | 3eqtr2ri | ⊢ ( 1 + ( i · ( i / 3 ) ) ) = ( 2 / 3 ) |
| 195 | 194 | fveq2i | ⊢ ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) = ( log ‘ ( 2 / 3 ) ) |
| 196 | 184 195 | oveq12i | ⊢ ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) = ( ( log ‘ ( 4 / 3 ) ) − ( log ‘ ( 2 / 3 ) ) ) |
| 197 | 4re | ⊢ 4 ∈ ℝ | |
| 198 | 4pos | ⊢ 0 < 4 | |
| 199 | 197 198 | elrpii | ⊢ 4 ∈ ℝ+ |
| 200 | 3rp | ⊢ 3 ∈ ℝ+ | |
| 201 | rpdivcl | ⊢ ( ( 4 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 4 / 3 ) ∈ ℝ+ ) | |
| 202 | 199 200 201 | mp2an | ⊢ ( 4 / 3 ) ∈ ℝ+ |
| 203 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 204 | rpdivcl | ⊢ ( ( 2 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 2 / 3 ) ∈ ℝ+ ) | |
| 205 | 203 200 204 | mp2an | ⊢ ( 2 / 3 ) ∈ ℝ+ |
| 206 | relogdiv | ⊢ ( ( ( 4 / 3 ) ∈ ℝ+ ∧ ( 2 / 3 ) ∈ ℝ+ ) → ( log ‘ ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ‘ ( 4 / 3 ) ) − ( log ‘ ( 2 / 3 ) ) ) ) | |
| 207 | 202 205 206 | mp2an | ⊢ ( log ‘ ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ‘ ( 4 / 3 ) ) − ( log ‘ ( 2 / 3 ) ) ) |
| 208 | 4cn | ⊢ 4 ∈ ℂ | |
| 209 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 210 | divcan7 | ⊢ ( ( 4 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) ) | |
| 211 | 208 209 185 210 | mp3an | ⊢ ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) |
| 212 | 4div2e2 | ⊢ ( 4 / 2 ) = 2 | |
| 213 | 211 212 | eqtri | ⊢ ( ( 4 / 3 ) / ( 2 / 3 ) ) = 2 |
| 214 | 213 | fveq2i | ⊢ ( log ‘ ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( log ‘ 2 ) |
| 215 | 196 207 214 | 3eqtr2i | ⊢ ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) = ( log ‘ 2 ) |
| 216 | 215 | oveq2i | ⊢ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) ) = ( ( i / 2 ) · ( log ‘ 2 ) ) |
| 217 | 166 216 | eqtri | ⊢ ( arctan ‘ ( i / 3 ) ) = ( ( i / 2 ) · ( log ‘ 2 ) ) |
| 218 | 217 | oveq2i | ⊢ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) = ( ( 2 / i ) · ( ( i / 2 ) · ( log ‘ 2 ) ) ) |
| 219 | 2ne0 | ⊢ 2 ≠ 0 | |
| 220 | 5 4 219 | divcli | ⊢ ( i / 2 ) ∈ ℂ |
| 221 | logcl | ⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( log ‘ 2 ) ∈ ℂ ) | |
| 222 | 4 219 221 | mp2an | ⊢ ( log ‘ 2 ) ∈ ℂ |
| 223 | 7 220 222 | mulassi | ⊢ ( ( ( 2 / i ) · ( i / 2 ) ) · ( log ‘ 2 ) ) = ( ( 2 / i ) · ( ( i / 2 ) · ( log ‘ 2 ) ) ) |
| 224 | 218 223 | eqtr4i | ⊢ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) = ( ( ( 2 / i ) · ( i / 2 ) ) · ( log ‘ 2 ) ) |
| 225 | divcan6 | ⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 2 / i ) · ( i / 2 ) ) = 1 ) | |
| 226 | 4 219 5 6 225 | mp4an | ⊢ ( ( 2 / i ) · ( i / 2 ) ) = 1 |
| 227 | 226 | oveq1i | ⊢ ( ( ( 2 / i ) · ( i / 2 ) ) · ( log ‘ 2 ) ) = ( 1 · ( log ‘ 2 ) ) |
| 228 | 222 | mullidi | ⊢ ( 1 · ( log ‘ 2 ) ) = ( log ‘ 2 ) |
| 229 | 224 227 228 | 3eqtri | ⊢ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) = ( log ‘ 2 ) |
| 230 | 162 229 | breqtri | ⊢ seq 0 ( + , 𝐹 ) ⇝ ( log ‘ 2 ) |