This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 2cnne0

Description: 2 is a nonzero complex number. (Contributed by David A. Wheeler, 7-Dec-2018)

Ref Expression
Assertion 2cnne0 ( 2 ∈ ℂ ∧ 2 ≠ 0 )

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 2ne0 2 ≠ 0
3 1 2 pm3.2i ( 2 ∈ ℂ ∧ 2 ≠ 0 )