This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancel equal divisors in a division. (Contributed by Jeff Hankins, 29-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan7 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) / ( 𝐵 / 𝐶 ) ) = ( 𝐴 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdivdiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) ∧ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) / ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 · 𝐶 ) / ( 𝐶 · 𝐵 ) ) ) | |
| 2 | 1 | 3impdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) / ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 · 𝐶 ) / ( 𝐶 · 𝐵 ) ) ) |
| 3 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) | |
| 4 | 3 | adantrr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / ( 𝐶 · 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) / ( 𝐶 · 𝐵 ) ) ) |
| 7 | divcan5 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) / ( 𝐶 · 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) | |
| 8 | 2 6 7 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) / ( 𝐵 / 𝐶 ) ) = ( 𝐴 / 𝐵 ) ) |