This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divsubdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | divdir | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) | |
| 3 | 1 2 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
| 4 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
| 7 | 3 6 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
| 8 | divneg | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) | |
| 9 | 8 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
| 12 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) | |
| 13 | 12 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 15 | divcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) | |
| 16 | 15 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 17 | 16 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 18 | 14 17 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
| 19 | 11 18 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
| 20 | 7 19 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |