This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mulexpd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| sqdivd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| expdivd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | expdivd | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mulexpd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | sqdivd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 4 | expdivd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 5 | expdiv | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) | |
| 6 | 1 2 3 4 5 | syl121anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |