This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndatandm | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) | |
| 2 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 4 | 3 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 5 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 6 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) | |
| 7 | 1 5 6 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( ( abs ‘ 𝐴 ) ↑ 2 ) ) |
| 8 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) | |
| 9 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 11 | 1red | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℝ ) | |
| 12 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 14 | 0le1 | ⊢ 0 ≤ 1 | |
| 15 | 14 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ 1 ) |
| 16 | 10 11 13 15 | lt2sqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
| 17 | 8 16 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( 1 ↑ 2 ) ) |
| 18 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 19 | 17 18 | breqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) < 1 ) |
| 20 | 7 19 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) < 1 ) |
| 21 | 4 20 | ltned | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( 𝐴 ↑ 2 ) ) ≠ 1 ) |
| 22 | fveq2 | ⊢ ( ( 𝐴 ↑ 2 ) = - 1 → ( abs ‘ ( 𝐴 ↑ 2 ) ) = ( abs ‘ - 1 ) ) | |
| 23 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 24 | 23 | absnegi | ⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
| 25 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 26 | 24 25 | eqtri | ⊢ ( abs ‘ - 1 ) = 1 |
| 27 | 22 26 | eqtrdi | ⊢ ( ( 𝐴 ↑ 2 ) = - 1 → ( abs ‘ ( 𝐴 ↑ 2 ) ) = 1 ) |
| 28 | 27 | necon3i | ⊢ ( ( abs ‘ ( 𝐴 ↑ 2 ) ) ≠ 1 → ( 𝐴 ↑ 2 ) ≠ - 1 ) |
| 29 | 21 28 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 2 ) ≠ - 1 ) |
| 30 | atandm3 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) | |
| 31 | 1 29 30 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ dom arctan ) |