This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Using the Taylor series for arctan ( _i / 3 ) , produce a rapidly convergent series for log 2 . (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | log2cnv.1 | |- F = ( n e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) |
|
| Assertion | log2cnv | |- seq 0 ( + , F ) ~~> ( log ` 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2cnv.1 | |- F = ( n e. NN0 |-> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) ) |
|
| 2 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 3 | 0zd | |- ( T. -> 0 e. ZZ ) |
|
| 4 | 2cn | |- 2 e. CC |
|
| 5 | ax-icn | |- _i e. CC |
|
| 6 | ine0 | |- _i =/= 0 |
|
| 7 | 4 5 6 | divcli | |- ( 2 / _i ) e. CC |
| 8 | 7 | a1i | |- ( T. -> ( 2 / _i ) e. CC ) |
| 9 | 3cn | |- 3 e. CC |
|
| 10 | 3ne0 | |- 3 =/= 0 |
|
| 11 | 5 9 10 | divcli | |- ( _i / 3 ) e. CC |
| 12 | absdiv | |- ( ( _i e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( abs ` ( _i / 3 ) ) = ( ( abs ` _i ) / ( abs ` 3 ) ) ) |
|
| 13 | 5 9 10 12 | mp3an | |- ( abs ` ( _i / 3 ) ) = ( ( abs ` _i ) / ( abs ` 3 ) ) |
| 14 | absi | |- ( abs ` _i ) = 1 |
|
| 15 | 3re | |- 3 e. RR |
|
| 16 | 0re | |- 0 e. RR |
|
| 17 | 3pos | |- 0 < 3 |
|
| 18 | 16 15 17 | ltleii | |- 0 <_ 3 |
| 19 | absid | |- ( ( 3 e. RR /\ 0 <_ 3 ) -> ( abs ` 3 ) = 3 ) |
|
| 20 | 15 18 19 | mp2an | |- ( abs ` 3 ) = 3 |
| 21 | 14 20 | oveq12i | |- ( ( abs ` _i ) / ( abs ` 3 ) ) = ( 1 / 3 ) |
| 22 | 13 21 | eqtri | |- ( abs ` ( _i / 3 ) ) = ( 1 / 3 ) |
| 23 | 1lt3 | |- 1 < 3 |
|
| 24 | recgt1 | |- ( ( 3 e. RR /\ 0 < 3 ) -> ( 1 < 3 <-> ( 1 / 3 ) < 1 ) ) |
|
| 25 | 15 17 24 | mp2an | |- ( 1 < 3 <-> ( 1 / 3 ) < 1 ) |
| 26 | 23 25 | mpbi | |- ( 1 / 3 ) < 1 |
| 27 | 22 26 | eqbrtri | |- ( abs ` ( _i / 3 ) ) < 1 |
| 28 | eqid | |- ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 29 | 28 | atantayl3 | |- ( ( ( _i / 3 ) e. CC /\ ( abs ` ( _i / 3 ) ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) ) |
| 30 | 11 27 29 | mp2an | |- seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) |
| 31 | 30 | a1i | |- ( T. -> seq 0 ( + , ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ) ~~> ( arctan ` ( _i / 3 ) ) ) |
| 32 | oveq2 | |- ( n = k -> ( -u 1 ^ n ) = ( -u 1 ^ k ) ) |
|
| 33 | oveq2 | |- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
|
| 34 | 33 | oveq1d | |- ( n = k -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 35 | 34 | oveq2d | |- ( n = k -> ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) = ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) |
| 36 | 35 34 | oveq12d | |- ( n = k -> ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) = ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 37 | 32 36 | oveq12d | |- ( n = k -> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 38 | ovex | |- ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) e. _V |
|
| 39 | 37 28 38 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 40 | 5 | a1i | |- ( k e. NN0 -> _i e. CC ) |
| 41 | 9 | a1i | |- ( k e. NN0 -> 3 e. CC ) |
| 42 | 10 | a1i | |- ( k e. NN0 -> 3 =/= 0 ) |
| 43 | 2nn0 | |- 2 e. NN0 |
|
| 44 | nn0mulcl | |- ( ( 2 e. NN0 /\ k e. NN0 ) -> ( 2 x. k ) e. NN0 ) |
|
| 45 | 43 44 | mpan | |- ( k e. NN0 -> ( 2 x. k ) e. NN0 ) |
| 46 | peano2nn0 | |- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
|
| 47 | 45 46 | syl | |- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 48 | 40 41 42 47 | expdivd | |- ( k e. NN0 -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 49 | 48 | oveq2d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 50 | neg1cn | |- -u 1 e. CC |
|
| 51 | expcl | |- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
|
| 52 | 50 51 | mpan | |- ( k e. NN0 -> ( -u 1 ^ k ) e. CC ) |
| 53 | expcl | |- ( ( _i e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( _i ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
|
| 54 | 5 47 53 | sylancr | |- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 55 | 3nn | |- 3 e. NN |
|
| 56 | nnexpcl | |- ( ( 3 e. NN /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. NN ) |
|
| 57 | 55 47 56 | sylancr | |- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. NN ) |
| 58 | 57 | nncnd | |- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 59 | 57 | nnne0d | |- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) =/= 0 ) |
| 60 | 52 54 58 59 | divassd | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( _i ^ ( ( 2 x. k ) + 1 ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 61 | expp1 | |- ( ( _i e. CC /\ ( 2 x. k ) e. NN0 ) -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( 2 x. k ) ) x. _i ) ) |
|
| 62 | 5 45 61 | sylancr | |- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( _i ^ ( 2 x. k ) ) x. _i ) ) |
| 63 | expmul | |- ( ( _i e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( _i ^ ( 2 x. k ) ) = ( ( _i ^ 2 ) ^ k ) ) |
|
| 64 | 5 43 63 | mp3an12 | |- ( k e. NN0 -> ( _i ^ ( 2 x. k ) ) = ( ( _i ^ 2 ) ^ k ) ) |
| 65 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 66 | 65 | oveq1i | |- ( ( _i ^ 2 ) ^ k ) = ( -u 1 ^ k ) |
| 67 | 64 66 | eqtrdi | |- ( k e. NN0 -> ( _i ^ ( 2 x. k ) ) = ( -u 1 ^ k ) ) |
| 68 | 67 | oveq1d | |- ( k e. NN0 -> ( ( _i ^ ( 2 x. k ) ) x. _i ) = ( ( -u 1 ^ k ) x. _i ) ) |
| 69 | 62 68 | eqtrd | |- ( k e. NN0 -> ( _i ^ ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. _i ) ) |
| 70 | 69 | oveq2d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) = ( ( -u 1 ^ k ) x. ( ( -u 1 ^ k ) x. _i ) ) ) |
| 71 | 52 52 40 | mulassd | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = ( ( -u 1 ^ k ) x. ( ( -u 1 ^ k ) x. _i ) ) ) |
| 72 | 50 | a1i | |- ( k e. NN0 -> -u 1 e. CC ) |
| 73 | id | |- ( k e. NN0 -> k e. NN0 ) |
|
| 74 | 72 73 73 | expaddd | |- ( k e. NN0 -> ( -u 1 ^ ( k + k ) ) = ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) ) |
| 75 | expmul | |- ( ( -u 1 e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( -u 1 ^ ( 2 x. k ) ) = ( ( -u 1 ^ 2 ) ^ k ) ) |
|
| 76 | 50 43 75 | mp3an12 | |- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( ( -u 1 ^ 2 ) ^ k ) ) |
| 77 | neg1sqe1 | |- ( -u 1 ^ 2 ) = 1 |
|
| 78 | 77 | oveq1i | |- ( ( -u 1 ^ 2 ) ^ k ) = ( 1 ^ k ) |
| 79 | 76 78 | eqtrdi | |- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( 1 ^ k ) ) |
| 80 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 81 | 80 | 2timesd | |- ( k e. NN0 -> ( 2 x. k ) = ( k + k ) ) |
| 82 | 81 | oveq2d | |- ( k e. NN0 -> ( -u 1 ^ ( 2 x. k ) ) = ( -u 1 ^ ( k + k ) ) ) |
| 83 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 84 | 1exp | |- ( k e. ZZ -> ( 1 ^ k ) = 1 ) |
|
| 85 | 83 84 | syl | |- ( k e. NN0 -> ( 1 ^ k ) = 1 ) |
| 86 | 79 82 85 | 3eqtr3d | |- ( k e. NN0 -> ( -u 1 ^ ( k + k ) ) = 1 ) |
| 87 | 74 86 | eqtr3d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) = 1 ) |
| 88 | 87 | oveq1d | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = ( 1 x. _i ) ) |
| 89 | 5 | mullidi | |- ( 1 x. _i ) = _i |
| 90 | 88 89 | eqtrdi | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( -u 1 ^ k ) ) x. _i ) = _i ) |
| 91 | 70 71 90 | 3eqtr2d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) = _i ) |
| 92 | 91 | oveq1d | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 93 | 49 60 92 | 3eqtr2d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 94 | 93 | oveq1d | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 95 | expcl | |- ( ( ( _i / 3 ) e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
|
| 96 | 11 47 95 | sylancr | |- ( k e. NN0 -> ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 97 | nn0p1nn | |- ( ( 2 x. k ) e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
|
| 98 | 45 97 | syl | |- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 99 | 98 | nncnd | |- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 100 | 98 | nnne0d | |- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) =/= 0 ) |
| 101 | 52 96 99 100 | divassd | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 102 | 40 58 99 59 100 | divdiv1d | |- ( k e. NN0 -> ( ( _i / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 103 | 94 101 102 | 3eqtr3d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 104 | 58 99 | mulcomd | |- ( k e. NN0 -> ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) = ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 105 | 104 | oveq2d | |- ( k e. NN0 -> ( _i / ( ( 3 ^ ( ( 2 x. k ) + 1 ) ) x. ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 106 | 39 103 105 | 3eqtrd | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 107 | 98 57 | nnmulcld | |- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) e. NN ) |
| 108 | 107 | nncnd | |- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) e. CC ) |
| 109 | 107 | nnne0d | |- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) =/= 0 ) |
| 110 | 40 108 109 | divcld | |- ( k e. NN0 -> ( _i / ( ( ( 2 x. k ) + 1 ) x. ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) ) e. CC ) |
| 111 | 106 110 | eqeltrd | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) e. CC ) |
| 112 | 111 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) e. CC ) |
| 113 | 34 | oveq2d | |- ( n = k -> ( 3 x. ( ( 2 x. n ) + 1 ) ) = ( 3 x. ( ( 2 x. k ) + 1 ) ) ) |
| 114 | oveq2 | |- ( n = k -> ( 9 ^ n ) = ( 9 ^ k ) ) |
|
| 115 | 113 114 | oveq12d | |- ( n = k -> ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) = ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) |
| 116 | 115 | oveq2d | |- ( n = k -> ( 2 / ( ( 3 x. ( ( 2 x. n ) + 1 ) ) x. ( 9 ^ n ) ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 117 | ovex | |- ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. _V |
|
| 118 | 116 1 117 | fvmpt | |- ( k e. NN0 -> ( F ` k ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 119 | expp1 | |- ( ( 3 e. CC /\ ( 2 x. k ) e. NN0 ) -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( ( 3 ^ ( 2 x. k ) ) x. 3 ) ) |
|
| 120 | 9 45 119 | sylancr | |- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( ( 3 ^ ( 2 x. k ) ) x. 3 ) ) |
| 121 | expmul | |- ( ( 3 e. CC /\ 2 e. NN0 /\ k e. NN0 ) -> ( 3 ^ ( 2 x. k ) ) = ( ( 3 ^ 2 ) ^ k ) ) |
|
| 122 | 9 43 121 | mp3an12 | |- ( k e. NN0 -> ( 3 ^ ( 2 x. k ) ) = ( ( 3 ^ 2 ) ^ k ) ) |
| 123 | sq3 | |- ( 3 ^ 2 ) = 9 |
|
| 124 | 123 | oveq1i | |- ( ( 3 ^ 2 ) ^ k ) = ( 9 ^ k ) |
| 125 | 122 124 | eqtrdi | |- ( k e. NN0 -> ( 3 ^ ( 2 x. k ) ) = ( 9 ^ k ) ) |
| 126 | 125 | oveq1d | |- ( k e. NN0 -> ( ( 3 ^ ( 2 x. k ) ) x. 3 ) = ( ( 9 ^ k ) x. 3 ) ) |
| 127 | 9nn | |- 9 e. NN |
|
| 128 | nnexpcl | |- ( ( 9 e. NN /\ k e. NN0 ) -> ( 9 ^ k ) e. NN ) |
|
| 129 | 127 128 | mpan | |- ( k e. NN0 -> ( 9 ^ k ) e. NN ) |
| 130 | 129 | nncnd | |- ( k e. NN0 -> ( 9 ^ k ) e. CC ) |
| 131 | mulcom | |- ( ( ( 9 ^ k ) e. CC /\ 3 e. CC ) -> ( ( 9 ^ k ) x. 3 ) = ( 3 x. ( 9 ^ k ) ) ) |
|
| 132 | 130 9 131 | sylancl | |- ( k e. NN0 -> ( ( 9 ^ k ) x. 3 ) = ( 3 x. ( 9 ^ k ) ) ) |
| 133 | 120 126 132 | 3eqtrd | |- ( k e. NN0 -> ( 3 ^ ( ( 2 x. k ) + 1 ) ) = ( 3 x. ( 9 ^ k ) ) ) |
| 134 | 91 133 | oveq12d | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( _i ^ ( ( 2 x. k ) + 1 ) ) ) / ( 3 ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 x. ( 9 ^ k ) ) ) ) |
| 135 | 49 60 134 | 3eqtr2d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( 3 x. ( 9 ^ k ) ) ) ) |
| 136 | 135 | oveq1d | |- ( k e. NN0 -> ( ( ( -u 1 ^ k ) x. ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( ( _i / ( 3 x. ( 9 ^ k ) ) ) / ( ( 2 x. k ) + 1 ) ) ) |
| 137 | nnmulcl | |- ( ( 3 e. NN /\ ( 9 ^ k ) e. NN ) -> ( 3 x. ( 9 ^ k ) ) e. NN ) |
|
| 138 | 55 129 137 | sylancr | |- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) e. NN ) |
| 139 | 138 | nncnd | |- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) e. CC ) |
| 140 | 138 | nnne0d | |- ( k e. NN0 -> ( 3 x. ( 9 ^ k ) ) =/= 0 ) |
| 141 | 40 139 99 140 100 | divdiv1d | |- ( k e. NN0 -> ( ( _i / ( 3 x. ( 9 ^ k ) ) ) / ( ( 2 x. k ) + 1 ) ) = ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 142 | 136 101 141 | 3eqtr3d | |- ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. k ) + 1 ) ) / ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) ) |
| 143 | 41 130 99 | mul32d | |- ( k e. NN0 -> ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) = ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) |
| 144 | 143 | oveq2d | |- ( k e. NN0 -> ( _i / ( ( 3 x. ( 9 ^ k ) ) x. ( ( 2 x. k ) + 1 ) ) ) = ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 145 | 39 142 144 | 3eqtrd | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) = ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 146 | 145 | oveq2d | |- ( k e. NN0 -> ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
| 147 | nnmulcl | |- ( ( 3 e. NN /\ ( ( 2 x. k ) + 1 ) e. NN ) -> ( 3 x. ( ( 2 x. k ) + 1 ) ) e. NN ) |
|
| 148 | 55 98 147 | sylancr | |- ( k e. NN0 -> ( 3 x. ( ( 2 x. k ) + 1 ) ) e. NN ) |
| 149 | 148 129 | nnmulcld | |- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) e. NN ) |
| 150 | 149 | nncnd | |- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) e. CC ) |
| 151 | 149 | nnne0d | |- ( k e. NN0 -> ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) =/= 0 ) |
| 152 | 40 150 151 | divcld | |- ( k e. NN0 -> ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. CC ) |
| 153 | mulcom | |- ( ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) e. CC /\ ( 2 / _i ) e. CC ) -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
|
| 154 | 152 7 153 | sylancl | |- ( k e. NN0 -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( ( 2 / _i ) x. ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) ) |
| 155 | 4 | a1i | |- ( k e. NN0 -> 2 e. CC ) |
| 156 | 6 | a1i | |- ( k e. NN0 -> _i =/= 0 ) |
| 157 | 155 40 150 156 151 | dmdcand | |- ( k e. NN0 -> ( ( _i / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) x. ( 2 / _i ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 158 | 146 154 157 | 3eqtr2d | |- ( k e. NN0 -> ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) = ( 2 / ( ( 3 x. ( ( 2 x. k ) + 1 ) ) x. ( 9 ^ k ) ) ) ) |
| 159 | 118 158 | eqtr4d | |- ( k e. NN0 -> ( F ` k ) = ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) ) |
| 160 | 159 | adantl | |- ( ( T. /\ k e. NN0 ) -> ( F ` k ) = ( ( 2 / _i ) x. ( ( n e. NN0 |-> ( ( -u 1 ^ n ) x. ( ( ( _i / 3 ) ^ ( ( 2 x. n ) + 1 ) ) / ( ( 2 x. n ) + 1 ) ) ) ) ` k ) ) ) |
| 161 | 2 3 8 31 112 160 | isermulc2 | |- ( T. -> seq 0 ( + , F ) ~~> ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) ) |
| 162 | 161 | mptru | |- seq 0 ( + , F ) ~~> ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) |
| 163 | bndatandm | |- ( ( ( _i / 3 ) e. CC /\ ( abs ` ( _i / 3 ) ) < 1 ) -> ( _i / 3 ) e. dom arctan ) |
|
| 164 | 11 27 163 | mp2an | |- ( _i / 3 ) e. dom arctan |
| 165 | atanval | |- ( ( _i / 3 ) e. dom arctan -> ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) ) |
|
| 166 | 164 165 | ax-mp | |- ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) |
| 167 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 168 | 167 | oveq1i | |- ( 4 / 3 ) = ( ( 3 + 1 ) / 3 ) |
| 169 | ax-1cn | |- 1 e. CC |
|
| 170 | 9 169 9 10 | divdiri | |- ( ( 3 + 1 ) / 3 ) = ( ( 3 / 3 ) + ( 1 / 3 ) ) |
| 171 | 9 10 | dividi | |- ( 3 / 3 ) = 1 |
| 172 | 171 | oveq1i | |- ( ( 3 / 3 ) + ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 173 | 168 170 172 | 3eqtri | |- ( 4 / 3 ) = ( 1 + ( 1 / 3 ) ) |
| 174 | 169 9 10 | divcli | |- ( 1 / 3 ) e. CC |
| 175 | 169 174 | subnegi | |- ( 1 - -u ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
| 176 | divneg | |- ( ( 1 e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> -u ( 1 / 3 ) = ( -u 1 / 3 ) ) |
|
| 177 | 169 9 10 176 | mp3an | |- -u ( 1 / 3 ) = ( -u 1 / 3 ) |
| 178 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 179 | 178 | oveq1i | |- ( ( _i x. _i ) / 3 ) = ( -u 1 / 3 ) |
| 180 | 5 5 9 10 | divassi | |- ( ( _i x. _i ) / 3 ) = ( _i x. ( _i / 3 ) ) |
| 181 | 177 179 180 | 3eqtr2i | |- -u ( 1 / 3 ) = ( _i x. ( _i / 3 ) ) |
| 182 | 181 | oveq2i | |- ( 1 - -u ( 1 / 3 ) ) = ( 1 - ( _i x. ( _i / 3 ) ) ) |
| 183 | 173 175 182 | 3eqtr2ri | |- ( 1 - ( _i x. ( _i / 3 ) ) ) = ( 4 / 3 ) |
| 184 | 183 | fveq2i | |- ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) = ( log ` ( 4 / 3 ) ) |
| 185 | 9 10 | pm3.2i | |- ( 3 e. CC /\ 3 =/= 0 ) |
| 186 | divsubdir | |- ( ( 3 e. CC /\ 1 e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) ) |
|
| 187 | 9 169 185 186 | mp3an | |- ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) |
| 188 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 189 | 188 | oveq1i | |- ( ( 3 - 1 ) / 3 ) = ( 2 / 3 ) |
| 190 | 171 | oveq1i | |- ( ( 3 / 3 ) - ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 191 | 187 189 190 | 3eqtr3i | |- ( 2 / 3 ) = ( 1 - ( 1 / 3 ) ) |
| 192 | 169 174 | negsubi | |- ( 1 + -u ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 193 | 181 | oveq2i | |- ( 1 + -u ( 1 / 3 ) ) = ( 1 + ( _i x. ( _i / 3 ) ) ) |
| 194 | 191 192 193 | 3eqtr2ri | |- ( 1 + ( _i x. ( _i / 3 ) ) ) = ( 2 / 3 ) |
| 195 | 194 | fveq2i | |- ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) = ( log ` ( 2 / 3 ) ) |
| 196 | 184 195 | oveq12i | |- ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) |
| 197 | 4re | |- 4 e. RR |
|
| 198 | 4pos | |- 0 < 4 |
|
| 199 | 197 198 | elrpii | |- 4 e. RR+ |
| 200 | 3rp | |- 3 e. RR+ |
|
| 201 | rpdivcl | |- ( ( 4 e. RR+ /\ 3 e. RR+ ) -> ( 4 / 3 ) e. RR+ ) |
|
| 202 | 199 200 201 | mp2an | |- ( 4 / 3 ) e. RR+ |
| 203 | 2rp | |- 2 e. RR+ |
|
| 204 | rpdivcl | |- ( ( 2 e. RR+ /\ 3 e. RR+ ) -> ( 2 / 3 ) e. RR+ ) |
|
| 205 | 203 200 204 | mp2an | |- ( 2 / 3 ) e. RR+ |
| 206 | relogdiv | |- ( ( ( 4 / 3 ) e. RR+ /\ ( 2 / 3 ) e. RR+ ) -> ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) ) |
|
| 207 | 202 205 206 | mp2an | |- ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ` ( 4 / 3 ) ) - ( log ` ( 2 / 3 ) ) ) |
| 208 | 4cn | |- 4 e. CC |
|
| 209 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 210 | divcan7 | |- ( ( 4 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) ) |
|
| 211 | 208 209 185 210 | mp3an | |- ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) |
| 212 | 4div2e2 | |- ( 4 / 2 ) = 2 |
|
| 213 | 211 212 | eqtri | |- ( ( 4 / 3 ) / ( 2 / 3 ) ) = 2 |
| 214 | 213 | fveq2i | |- ( log ` ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( log ` 2 ) |
| 215 | 196 207 214 | 3eqtr2i | |- ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) = ( log ` 2 ) |
| 216 | 215 | oveq2i | |- ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( _i / 3 ) ) ) ) - ( log ` ( 1 + ( _i x. ( _i / 3 ) ) ) ) ) ) = ( ( _i / 2 ) x. ( log ` 2 ) ) |
| 217 | 166 216 | eqtri | |- ( arctan ` ( _i / 3 ) ) = ( ( _i / 2 ) x. ( log ` 2 ) ) |
| 218 | 217 | oveq2i | |- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( ( 2 / _i ) x. ( ( _i / 2 ) x. ( log ` 2 ) ) ) |
| 219 | 2ne0 | |- 2 =/= 0 |
|
| 220 | 5 4 219 | divcli | |- ( _i / 2 ) e. CC |
| 221 | logcl | |- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( log ` 2 ) e. CC ) |
|
| 222 | 4 219 221 | mp2an | |- ( log ` 2 ) e. CC |
| 223 | 7 220 222 | mulassi | |- ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) = ( ( 2 / _i ) x. ( ( _i / 2 ) x. ( log ` 2 ) ) ) |
| 224 | 218 223 | eqtr4i | |- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) |
| 225 | divcan6 | |- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( 2 / _i ) x. ( _i / 2 ) ) = 1 ) |
|
| 226 | 4 219 5 6 225 | mp4an | |- ( ( 2 / _i ) x. ( _i / 2 ) ) = 1 |
| 227 | 226 | oveq1i | |- ( ( ( 2 / _i ) x. ( _i / 2 ) ) x. ( log ` 2 ) ) = ( 1 x. ( log ` 2 ) ) |
| 228 | 222 | mullidi | |- ( 1 x. ( log ` 2 ) ) = ( log ` 2 ) |
| 229 | 224 227 228 | 3eqtri | |- ( ( 2 / _i ) x. ( arctan ` ( _i / 3 ) ) ) = ( log ` 2 ) |
| 230 | 162 229 | breqtri | |- seq 0 ( + , F ) ~~> ( log ` 2 ) |