This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the natural logarithm function. (Contributed by NM, 21-Apr-2008) (Revised by Mario Carneiro, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logrncl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) | |
| 2 | logrncn | ⊢ ( ( log ‘ 𝐴 ) ∈ ran log → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |