This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value distributes over division. (Contributed by NM, 27-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absdiv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 / 𝐵 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 2 | abscl | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
| 4 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 5 | absrpcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
| 7 | 6 | rpcnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 8 | 6 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ≠ 0 ) |
| 9 | 4 7 8 | divcan4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) / ( abs ‘ 𝐵 ) ) = ( abs ‘ ( 𝐴 / 𝐵 ) ) ) |
| 10 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) | |
| 11 | absmul | ⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) ) | |
| 12 | 1 10 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) ) |
| 13 | divcan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) | |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( abs ‘ 𝐴 ) ) |
| 15 | 12 14 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) = ( abs ‘ 𝐴 ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) / ( abs ‘ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐵 ) ) ) |
| 17 | 9 16 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 / 𝐵 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐵 ) ) ) |