This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative law for division. (Contributed by NM, 15-Feb-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
| divmulz.3 | ⊢ 𝐶 ∈ ℂ | ||
| divass.4 | ⊢ 𝐶 ≠ 0 | ||
| Assertion | divassi | ⊢ ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | divmulz.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | divass.4 | ⊢ 𝐶 ≠ 0 | |
| 5 | 1 2 3 | divasszi | ⊢ ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |
| 6 | 4 5 | ax-mp | ⊢ ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) |