This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atantayl3.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| Assertion | atantayl3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atantayl3.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 2 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 3 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 4 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 6 | 5 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | pncan | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) ) |
| 11 | nn0cn | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℂ ) |
| 13 | 2cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 2 ∈ ℂ ) | |
| 14 | 2ne0 | ⊢ 2 ≠ 0 | |
| 15 | 14 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 2 ≠ 0 ) |
| 16 | 12 13 15 | divcan3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
| 17 | 10 16 | eqtr2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 = ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) = ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
| 19 | 18 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 20 | 19 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 21 | 1 20 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 22 | 21 | seqeq3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) |
| 23 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) | |
| 24 | 23 | atantayl2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) |
| 25 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 26 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) | |
| 27 | 25 3 26 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) |
| 28 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 29 | peano2nn0 | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) | |
| 30 | 5 29 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) |
| 31 | 28 30 | expcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 32 | nn0p1nn | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) | |
| 33 | 5 32 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 34 | 33 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 35 | 33 | nnne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 36 | 31 34 35 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 37 | 27 36 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
| 38 | 19 37 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
| 39 | oveq1 | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝑘 − 1 ) = ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ) | |
| 40 | 39 | oveq1d | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( 𝑘 − 1 ) / 2 ) = ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) |
| 41 | 40 | oveq2d | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) = ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
| 42 | oveq2 | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 43 | id | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → 𝑘 = ( ( 2 · 𝑛 ) + 1 ) ) | |
| 44 | 42 43 | oveq12d | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) = ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 45 | 41 44 | oveq12d | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) = ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 46 | 38 45 | iserodd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) ) |
| 47 | 24 46 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) |
| 48 | 22 47 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) ) |