This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 0 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑗 = 0 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 0 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 𝑘 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 · 𝑗 ) = ( 𝑀 · ( 𝑘 + 1 ) ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝑀 · 𝑗 ) = ( 𝑀 · 𝑁 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) | |
| 19 | 17 18 | eqeq12d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ↔ ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) ) |
| 21 | nn0cn | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) | |
| 22 | 21 | mul01d | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 · 0 ) = 0 ) |
| 23 | 22 | oveq2d | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( 𝐴 ↑ 0 ) ) |
| 24 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 25 | 23 24 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = 1 ) |
| 26 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) | |
| 27 | exp0 | ⊢ ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ → ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) = 1 ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) = 1 ) |
| 29 | 25 28 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 0 ) ) |
| 30 | oveq1 | ⊢ ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) | |
| 31 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 32 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 33 | adddi | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) ) | |
| 34 | 32 33 | mp3an3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) ) |
| 35 | mulrid | ⊢ ( 𝑀 ∈ ℂ → ( 𝑀 · 1 ) = 𝑀 ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · 1 ) = 𝑀 ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑀 · 𝑘 ) + ( 𝑀 · 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 38 | 34 37 | eqtrd | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 39 | 21 31 38 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 40 | 39 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · ( 𝑘 + 1 ) ) = ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) ) |
| 42 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 43 | nn0mulcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · 𝑘 ) ∈ ℕ0 ) | |
| 44 | 43 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 · 𝑘 ) ∈ ℕ0 ) |
| 45 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) | |
| 46 | expadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 · 𝑘 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) | |
| 47 | 42 44 45 46 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 · 𝑘 ) + 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 48 | 41 47 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 49 | expp1 | ⊢ ( ( ( 𝐴 ↑ 𝑀 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) | |
| 50 | 26 49 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 51 | 48 50 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ↔ ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) · ( 𝐴 ↑ 𝑀 ) ) = ( ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) · ( 𝐴 ↑ 𝑀 ) ) ) ) |
| 52 | 30 51 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 53 | 52 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 54 | 53 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 55 | 5 10 15 20 29 54 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) |
| 56 | 55 | expdcom | ⊢ ( 𝐴 ∈ ℂ → ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) ) ) |
| 57 | 56 | 3imp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 · 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) ↑ 𝑁 ) ) |