This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hashbc : inductive step. (Contributed by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashbc.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| hashbc.2 | ⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) | ||
| hashbc.3 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ) | ||
| hashbc.4 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| Assertion | hashbclem | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashbc.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | hashbc.2 | ⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) | |
| 3 | hashbc.3 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℤ ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ) | |
| 4 | hashbc.4 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 5 | oveq2 | ⊢ ( 𝑗 = 𝐾 → ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ( ♯ ‘ 𝐴 ) C 𝐾 ) ) | |
| 6 | eqeq2 | ⊢ ( 𝑗 = 𝐾 → ( ( ♯ ‘ 𝑥 ) = 𝑗 ↔ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) | |
| 7 | 6 | rabbidv | ⊢ ( 𝑗 = 𝐾 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑗 = 𝐾 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| 9 | 5 8 | eqeq12d | ⊢ ( 𝑗 = 𝐾 → ( ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) ) |
| 10 | 9 3 4 | rspcdva | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |
| 11 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) | |
| 12 | 11 | sspwi | ⊢ 𝒫 𝐴 ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) |
| 13 | 12 | sseli | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) |
| 15 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) | |
| 16 | 15 | ssneld | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → ( ¬ 𝑧 ∈ 𝐴 → ¬ 𝑧 ∈ 𝑥 ) ) |
| 17 | 2 16 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ¬ 𝑧 ∈ 𝑥 ) |
| 18 | 14 17 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ) |
| 19 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) → 𝑥 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) | |
| 20 | uncom | ⊢ ( 𝐴 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝐴 ) | |
| 21 | 19 20 | sseqtrdi | ⊢ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) → 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ) |
| 23 | simpr | ⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → ¬ 𝑧 ∈ 𝑥 ) | |
| 24 | disjsn | ⊢ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑥 ) | |
| 25 | 23 24 | sylibr | ⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝑥 ∩ { 𝑧 } ) = ∅ ) |
| 26 | disjssun | ⊢ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ → ( 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝑥 ⊆ ( { 𝑧 } ∪ 𝐴 ) ↔ 𝑥 ⊆ 𝐴 ) ) |
| 28 | 22 27 | mpbid | ⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
| 29 | vex | ⊢ 𝑥 ∈ V | |
| 30 | 29 | elpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
| 31 | 28 30 | sylibr | ⊢ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 33 | 18 32 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 ↔ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ) ) |
| 34 | 33 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) |
| 35 | anass | ⊢ ( ( ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) | |
| 36 | 34 35 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) ) |
| 37 | 36 | rabbidva2 | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
| 38 | 37 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 39 | 10 38 | eqtrd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 40 | oveq2 | ⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) | |
| 41 | eqeq2 | ⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ( ♯ ‘ 𝑥 ) = 𝑗 ↔ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) ) ) | |
| 42 | 41 | rabbidv | ⊢ ( 𝑗 = ( 𝐾 − 1 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) |
| 43 | 42 | fveq2d | ⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
| 44 | 40 43 | eqeq12d | ⊢ ( 𝑗 = ( 𝐾 − 1 ) → ( ( ( ♯ ‘ 𝐴 ) C 𝑗 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 𝑗 } ) ↔ ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) ) |
| 45 | peano2zm | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 − 1 ) ∈ ℤ ) | |
| 46 | 4 45 | syl | ⊢ ( 𝜑 → ( 𝐾 − 1 ) ∈ ℤ ) |
| 47 | 44 3 46 | rspcdva | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
| 48 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 49 | 1 48 | sylib | ⊢ ( 𝜑 → 𝒫 𝐴 ∈ Fin ) |
| 50 | rabexg | ⊢ ( 𝒫 𝐴 ∈ Fin → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ V ) | |
| 51 | 49 50 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ V ) |
| 52 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 53 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) | |
| 54 | 1 52 53 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
| 55 | pwfi | ⊢ ( ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ↔ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) | |
| 56 | 54 55 | sylib | ⊢ ( 𝜑 → 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
| 57 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) | |
| 58 | ssfi | ⊢ ( ( 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) | |
| 59 | 56 57 58 | sylancl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) |
| 60 | fveqeq2 | ⊢ ( 𝑥 = 𝑢 → ( ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) | |
| 61 | 60 | elrab | ⊢ ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ↔ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) |
| 62 | eleq2 | ⊢ ( 𝑥 = ( 𝑢 ∪ { 𝑧 } ) → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ) ) | |
| 63 | fveqeq2 | ⊢ ( 𝑥 = ( 𝑢 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) ) | |
| 64 | 62 63 | anbi12d | ⊢ ( 𝑥 = ( 𝑢 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ∧ ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) ) ) |
| 65 | elpwi | ⊢ ( 𝑢 ∈ 𝒫 𝐴 → 𝑢 ⊆ 𝐴 ) | |
| 66 | 65 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝑢 ⊆ 𝐴 ) |
| 67 | unss1 | ⊢ ( 𝑢 ⊆ 𝐴 → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝐴 ∪ { 𝑧 } ) ) | |
| 68 | 66 67 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
| 69 | vex | ⊢ 𝑢 ∈ V | |
| 70 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 71 | 69 70 | unex | ⊢ ( 𝑢 ∪ { 𝑧 } ) ∈ V |
| 72 | 71 | elpw | ⊢ ( ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ↔ ( 𝑢 ∪ { 𝑧 } ) ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
| 73 | 68 72 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∪ { 𝑧 } ) ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) |
| 74 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝐴 ∈ Fin ) |
| 75 | 74 66 | ssfid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝑢 ∈ Fin ) |
| 76 | 52 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → { 𝑧 } ∈ Fin ) |
| 77 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ¬ 𝑧 ∈ 𝐴 ) |
| 78 | 66 77 | ssneldd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ¬ 𝑧 ∈ 𝑢 ) |
| 79 | disjsn | ⊢ ( ( 𝑢 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑢 ) | |
| 80 | 78 79 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∩ { 𝑧 } ) = ∅ ) |
| 81 | hashun | ⊢ ( ( 𝑢 ∈ Fin ∧ { 𝑧 } ∈ Fin ∧ ( 𝑢 ∩ { 𝑧 } ) = ∅ ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑢 ) + ( ♯ ‘ { 𝑧 } ) ) ) | |
| 82 | 75 76 80 81 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑢 ) + ( ♯ ‘ { 𝑧 } ) ) ) |
| 83 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) | |
| 84 | hashsng | ⊢ ( 𝑧 ∈ V → ( ♯ ‘ { 𝑧 } ) = 1 ) | |
| 85 | 84 | elv | ⊢ ( ♯ ‘ { 𝑧 } ) = 1 |
| 86 | 85 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ { 𝑧 } ) = 1 ) |
| 87 | 83 86 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ( ♯ ‘ 𝑢 ) + ( ♯ ‘ { 𝑧 } ) ) = ( ( 𝐾 − 1 ) + 1 ) ) |
| 88 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 89 | 88 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → 𝐾 ∈ ℂ ) |
| 90 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 91 | npcan | ⊢ ( ( 𝐾 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) | |
| 92 | 89 90 91 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ( 𝐾 − 1 ) + 1 ) = 𝐾 ) |
| 93 | 82 87 92 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) |
| 94 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) | |
| 95 | vex | ⊢ 𝑧 ∈ V | |
| 96 | 95 | snss | ⊢ ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ↔ { 𝑧 } ⊆ ( 𝑢 ∪ { 𝑧 } ) ) |
| 97 | 94 96 | mpbir | ⊢ 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) |
| 98 | 93 97 | jctil | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑧 ∈ ( 𝑢 ∪ { 𝑧 } ) ∧ ( ♯ ‘ ( 𝑢 ∪ { 𝑧 } ) ) = 𝐾 ) ) |
| 99 | 64 73 98 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ) → ( 𝑢 ∪ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
| 100 | 99 | ex | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) → ( 𝑢 ∪ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 101 | 61 100 | biimtrid | ⊢ ( 𝜑 → ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } → ( 𝑢 ∪ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 102 | eleq2 | ⊢ ( 𝑥 = 𝑣 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑣 ) ) | |
| 103 | fveqeq2 | ⊢ ( 𝑥 = 𝑣 → ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) | |
| 104 | 102 103 | anbi12d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) |
| 105 | 104 | elrab | ⊢ ( 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ↔ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) |
| 106 | fveqeq2 | ⊢ ( 𝑥 = ( 𝑣 ∖ { 𝑧 } ) → ( ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) = ( 𝐾 − 1 ) ) ) | |
| 107 | elpwi | ⊢ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) → 𝑣 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) | |
| 108 | 107 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑣 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
| 109 | 108 20 | sseqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑣 ⊆ ( { 𝑧 } ∪ 𝐴 ) ) |
| 110 | ssundif | ⊢ ( 𝑣 ⊆ ( { 𝑧 } ∪ 𝐴 ) ↔ ( 𝑣 ∖ { 𝑧 } ) ⊆ 𝐴 ) | |
| 111 | 109 110 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ⊆ 𝐴 ) |
| 112 | vex | ⊢ 𝑣 ∈ V | |
| 113 | 112 | difexi | ⊢ ( 𝑣 ∖ { 𝑧 } ) ∈ V |
| 114 | 113 | elpw | ⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∈ 𝒫 𝐴 ↔ ( 𝑣 ∖ { 𝑧 } ) ⊆ 𝐴 ) |
| 115 | 111 114 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ 𝒫 𝐴 ) |
| 116 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝐴 ∈ Fin ) |
| 117 | 116 111 | ssfid | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ Fin ) |
| 118 | hashcl | ⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∈ Fin → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℕ0 ) | |
| 119 | 117 118 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℕ0 ) |
| 120 | 119 | nn0cnd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℂ ) |
| 121 | pncan | ⊢ ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) − 1 ) = ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ) | |
| 122 | 120 90 121 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) − 1 ) = ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) ) |
| 123 | undif1 | ⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( 𝑣 ∪ { 𝑧 } ) | |
| 124 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑧 ∈ 𝑣 ) | |
| 125 | 124 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → { 𝑧 } ⊆ 𝑣 ) |
| 126 | ssequn2 | ⊢ ( { 𝑧 } ⊆ 𝑣 ↔ ( 𝑣 ∪ { 𝑧 } ) = 𝑣 ) | |
| 127 | 125 126 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∪ { 𝑧 } ) = 𝑣 ) |
| 128 | 123 127 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝑣 ) |
| 129 | 128 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ♯ ‘ 𝑣 ) ) |
| 130 | 52 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → { 𝑧 } ∈ Fin ) |
| 131 | disjdifr | ⊢ ( ( 𝑣 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ | |
| 132 | 131 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( 𝑣 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ ) |
| 133 | hashun | ⊢ ( ( ( 𝑣 ∖ { 𝑧 } ) ∈ Fin ∧ { 𝑧 } ∈ Fin ∧ ( ( 𝑣 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + ( ♯ ‘ { 𝑧 } ) ) ) | |
| 134 | 117 130 132 133 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + ( ♯ ‘ { 𝑧 } ) ) ) |
| 135 | 85 | oveq2i | ⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + ( ♯ ‘ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) |
| 136 | 134 135 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( ( 𝑣 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) = ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) ) |
| 137 | simprrr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ 𝑣 ) = 𝐾 ) | |
| 138 | 129 136 137 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) = 𝐾 ) |
| 139 | 138 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) + 1 ) − 1 ) = ( 𝐾 − 1 ) ) |
| 140 | 122 139 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑧 } ) ) = ( 𝐾 − 1 ) ) |
| 141 | 106 115 140 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) |
| 142 | 141 | ex | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) → ( 𝑣 ∖ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
| 143 | 105 142 | biimtrid | ⊢ ( 𝜑 → ( 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } → ( 𝑣 ∖ { 𝑧 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) ) |
| 144 | 61 105 | anbi12i | ⊢ ( ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∧ 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ↔ ( ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) ) |
| 145 | simp3rl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → 𝑧 ∈ 𝑣 ) | |
| 146 | 145 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → { 𝑧 } ⊆ 𝑣 ) |
| 147 | incom | ⊢ ( { 𝑧 } ∩ 𝑢 ) = ( 𝑢 ∩ { 𝑧 } ) | |
| 148 | 80 | 3adant3 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑢 ∩ { 𝑧 } ) = ∅ ) |
| 149 | 147 148 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( { 𝑧 } ∩ 𝑢 ) = ∅ ) |
| 150 | uneqdifeq | ⊢ ( ( { 𝑧 } ⊆ 𝑣 ∧ ( { 𝑧 } ∩ 𝑢 ) = ∅ ) → ( ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ↔ ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ) ) | |
| 151 | 146 149 150 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ↔ ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ) ) |
| 152 | 151 | bicomd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ↔ ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ) ) |
| 153 | eqcom | ⊢ ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ ( 𝑣 ∖ { 𝑧 } ) = 𝑢 ) | |
| 154 | eqcom | ⊢ ( 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ↔ ( 𝑢 ∪ { 𝑧 } ) = 𝑣 ) | |
| 155 | uncom | ⊢ ( 𝑢 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝑢 ) | |
| 156 | 155 | eqeq1i | ⊢ ( ( 𝑢 ∪ { 𝑧 } ) = 𝑣 ↔ ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ) |
| 157 | 154 156 | bitri | ⊢ ( 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ↔ ( { 𝑧 } ∪ 𝑢 ) = 𝑣 ) |
| 158 | 152 153 157 | 3bitr4g | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ) ) |
| 159 | 158 | 3expib | ⊢ ( 𝜑 → ( ( ( 𝑢 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑢 ) = ( 𝐾 − 1 ) ) ∧ ( 𝑣 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝑧 ∈ 𝑣 ∧ ( ♯ ‘ 𝑣 ) = 𝐾 ) ) ) → ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ) ) ) |
| 160 | 144 159 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑢 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∧ 𝑣 ∈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) → ( 𝑢 = ( 𝑣 ∖ { 𝑧 } ) ↔ 𝑣 = ( 𝑢 ∪ { 𝑧 } ) ) ) ) |
| 161 | 51 59 101 143 160 | en3d | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ≈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
| 162 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ⊆ 𝒫 𝐴 | |
| 163 | ssfi | ⊢ ( ( 𝒫 𝐴 ∈ Fin ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ⊆ 𝒫 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ Fin ) | |
| 164 | 49 162 163 | sylancl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ Fin ) |
| 165 | hashen | ⊢ ( ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) → ( ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ↔ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ≈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) | |
| 166 | 164 59 165 | syl2anc | ⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ↔ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ≈ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 167 | 161 166 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = ( 𝐾 − 1 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 168 | 47 167 | eqtrd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 169 | 39 168 | oveq12d | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) |
| 170 | 52 | a1i | ⊢ ( 𝜑 → { 𝑧 } ∈ Fin ) |
| 171 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝐴 ) | |
| 172 | 2 171 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 173 | hashun | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ∧ ( 𝐴 ∩ { 𝑧 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑧 } ) ) ) | |
| 174 | 1 170 172 173 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑧 } ) ) ) |
| 175 | 85 | oveq2i | ⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) |
| 176 | 174 175 | eqtrdi | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
| 177 | 176 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) C 𝐾 ) = ( ( ( ♯ ‘ 𝐴 ) + 1 ) C 𝐾 ) ) |
| 178 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 179 | 1 178 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 180 | bcpasc | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) = ( ( ( ♯ ‘ 𝐴 ) + 1 ) C 𝐾 ) ) | |
| 181 | 179 4 180 | syl2anc | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) = ( ( ( ♯ ‘ 𝐴 ) + 1 ) C 𝐾 ) ) |
| 182 | 177 181 | eqtr4d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) C 𝐾 ) = ( ( ( ♯ ‘ 𝐴 ) C 𝐾 ) + ( ( ♯ ‘ 𝐴 ) C ( 𝐾 − 1 ) ) ) ) |
| 183 | pm2.1 | ⊢ ( ¬ 𝑧 ∈ 𝑥 ∨ 𝑧 ∈ 𝑥 ) | |
| 184 | 183 | biantrur | ⊢ ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ( ¬ 𝑧 ∈ 𝑥 ∨ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
| 185 | andir | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑥 ∨ 𝑧 ∈ 𝑥 ) ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ↔ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) | |
| 186 | 184 185 | bitri | ⊢ ( ( ♯ ‘ 𝑥 ) = 𝐾 ↔ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) |
| 187 | 186 | rabbii | ⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } |
| 188 | unrab | ⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∨ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } | |
| 189 | 187 188 | eqtr4i | ⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } = ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) |
| 190 | 189 | fveq2i | ⊢ ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) = ( ♯ ‘ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) |
| 191 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) | |
| 192 | ssfi | ⊢ ( ( 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ⊆ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ) → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) | |
| 193 | 56 191 192 | sylancl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ) |
| 194 | inrab | ⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } | |
| 195 | simprl | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) → 𝑧 ∈ 𝑥 ) | |
| 196 | simpll | ⊢ ( ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) → ¬ 𝑧 ∈ 𝑥 ) | |
| 197 | 195 196 | pm2.65i | ⊢ ¬ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
| 198 | 197 | rgenw | ⊢ ∀ 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ¬ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) |
| 199 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } = ∅ ↔ ∀ 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ¬ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) ) | |
| 200 | 198 199 | mpbir | ⊢ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ∧ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) ) } = ∅ |
| 201 | 194 200 | eqtri | ⊢ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = ∅ |
| 202 | 201 | a1i | ⊢ ( 𝜑 → ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = ∅ ) |
| 203 | hashun | ⊢ ( ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ∧ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∈ Fin ∧ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∩ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) | |
| 204 | 193 59 202 203 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ∪ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) |
| 205 | 190 204 | eqtrid | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) = ( ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ¬ 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) + ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( 𝑧 ∈ 𝑥 ∧ ( ♯ ‘ 𝑥 ) = 𝐾 ) } ) ) ) |
| 206 | 169 182 205 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ∪ { 𝑧 } ) ) C 𝐾 ) = ( ♯ ‘ { 𝑥 ∈ 𝒫 ( 𝐴 ∪ { 𝑧 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝐾 } ) ) |