This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inrab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
| 3 | 1 2 | ineq12i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) |
| 4 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) } | |
| 5 | inab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) } | |
| 6 | anandi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) | |
| 7 | 6 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) } |
| 8 | 5 7 | eqtr4i | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) } |
| 9 | 4 8 | eqtr4i | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∩ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) |
| 10 | 3 9 | eqtr4i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } |