This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 12-May-2014) (Revised by AV, 4-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | en3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| en3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| en3d.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | ||
| en3d.4 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴 ) ) | ||
| en3d.5 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) ) | ||
| Assertion | en3d | ⊢ ( 𝜑 → 𝐴 ≈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | en3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | en3d.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
| 4 | en3d.4 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝐷 ∈ 𝐴 ) ) | |
| 5 | en3d.5 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) ) | |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 7 | 3 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 8 | 4 | imp | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝐴 ) |
| 9 | 5 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = 𝐷 ↔ 𝑦 = 𝐶 ) ) |
| 10 | 6 7 8 9 | f1o2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1-onto→ 𝐵 ) |
| 11 | f1oen2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 –1-1-onto→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 12 | 1 2 10 11 | syl3anc | ⊢ ( 𝜑 → 𝐴 ≈ 𝐵 ) |