This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjssun | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq2 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ∅ ) ) | |
| 2 | indi | ⊢ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) | |
| 3 | 2 | equncomi | ⊢ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐴 ∩ 𝐵 ) ) |
| 4 | un0 | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ∅ ) = ( 𝐴 ∩ 𝐶 ) | |
| 5 | 4 | eqcomi | ⊢ ( 𝐴 ∩ 𝐶 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ∅ ) |
| 6 | 1 3 5 | 3eqtr4g | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( 𝐴 ∩ 𝐶 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 𝐴 ) ) |
| 8 | dfss2 | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = 𝐴 ) | |
| 9 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 ∩ 𝐶 ) = 𝐴 ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ 𝐴 ⊆ 𝐶 ) ) |