This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two finite sets is finite. Part of Corollary 6K of Enderton p. 144. (Contributed by NM, 16-Nov-2002) Avoid ax-pow . (Revised by BTernaryTau, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ ∅ ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ ∅ ) ∈ Fin ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ ∅ ) ∈ Fin ) ) ) |
| 4 | uneq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑦 ) ∈ Fin ) ) ) |
| 7 | uneq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 10 | uneq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∪ 𝑥 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∪ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑥 ) ∈ Fin ) ↔ ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) ) ) |
| 13 | un0 | ⊢ ( 𝐴 ∪ ∅ ) = 𝐴 | |
| 14 | 13 | eleq1i | ⊢ ( ( 𝐴 ∪ ∅ ) ∈ Fin ↔ 𝐴 ∈ Fin ) |
| 15 | 14 | biimpri | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∪ ∅ ) ∈ Fin ) |
| 16 | snssi | ⊢ ( 𝑧 ∈ 𝐴 → { 𝑧 } ⊆ 𝐴 ) | |
| 17 | ssequn2 | ⊢ ( { 𝑧 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝑧 } ) = 𝐴 ) | |
| 18 | 17 | biimpi | ⊢ ( { 𝑧 } ⊆ 𝐴 → ( 𝐴 ∪ { 𝑧 } ) = 𝐴 ) |
| 19 | 18 | uneq2d | ⊢ ( { 𝑧 } ⊆ 𝐴 → ( 𝑦 ∪ ( 𝐴 ∪ { 𝑧 } ) ) = ( 𝑦 ∪ 𝐴 ) ) |
| 20 | un12 | ⊢ ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝑦 ∪ ( 𝐴 ∪ { 𝑧 } ) ) | |
| 21 | uncom | ⊢ ( 𝐴 ∪ 𝑦 ) = ( 𝑦 ∪ 𝐴 ) | |
| 22 | 19 20 21 | 3eqtr4g | ⊢ ( { 𝑧 } ⊆ 𝐴 → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝐴 ∪ 𝑦 ) ) |
| 23 | 16 22 | syl | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝐴 ∪ 𝑦 ) ) |
| 24 | 23 | eleq1d | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ↔ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) ) |
| 25 | 24 | biimprd | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝐴 ∪ 𝑦 ) ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 26 | 25 | adantld | ⊢ ( 𝑧 ∈ 𝐴 → ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 27 | isfi | ⊢ ( ( 𝐴 ∪ 𝑦 ) ∈ Fin ↔ ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ) | |
| 28 | 27 | biimpi | ⊢ ( ( 𝐴 ∪ 𝑦 ) ∈ Fin → ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ) |
| 29 | r19.41v | ⊢ ( ∃ 𝑤 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ↔ ( ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ) | |
| 30 | disjsn | ⊢ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ) | |
| 31 | elun | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦 ) ) | |
| 32 | 31 | notbii | ⊢ ( ¬ 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ↔ ¬ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦 ) ) |
| 33 | pm4.56 | ⊢ ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ↔ ¬ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ 𝑦 ) ) | |
| 34 | 32 33 | bitr4i | ⊢ ( ¬ 𝑧 ∈ ( 𝐴 ∪ 𝑦 ) ↔ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 35 | 30 34 | sylbbr | ⊢ ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ) |
| 36 | nnord | ⊢ ( 𝑤 ∈ ω → Ord 𝑤 ) | |
| 37 | orddisj | ⊢ ( Ord 𝑤 → ( 𝑤 ∩ { 𝑤 } ) = ∅ ) | |
| 38 | 36 37 | syl | ⊢ ( 𝑤 ∈ ω → ( 𝑤 ∩ { 𝑤 } ) = ∅ ) |
| 39 | en2sn | ⊢ ( ( 𝑧 ∈ V ∧ 𝑤 ∈ V ) → { 𝑧 } ≈ { 𝑤 } ) | |
| 40 | 39 | el2v | ⊢ { 𝑧 } ≈ { 𝑤 } |
| 41 | unen | ⊢ ( ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ { 𝑧 } ≈ { 𝑤 } ) ∧ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ∧ ( 𝑤 ∩ { 𝑤 } ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) | |
| 42 | 40 41 | mpanl2 | ⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ∧ ( 𝑤 ∩ { 𝑤 } ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 43 | 38 42 | sylanr2 | ⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ( ( 𝐴 ∪ 𝑦 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑤 ∈ ω ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 44 | 35 43 | sylanr1 | ⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑤 ∈ ω ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 45 | 44 | 3impb | ⊢ ( ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑤 ∈ ω ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 46 | 45 | 3comr | ⊢ ( ( 𝑤 ∈ ω ∧ ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 47 | 46 | 3expb | ⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) |
| 48 | unass | ⊢ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) = ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 49 | df-suc | ⊢ suc 𝑤 = ( 𝑤 ∪ { 𝑤 } ) | |
| 50 | peano2 | ⊢ ( 𝑤 ∈ ω → suc 𝑤 ∈ ω ) | |
| 51 | 49 50 | eqeltrrid | ⊢ ( 𝑤 ∈ ω → ( 𝑤 ∪ { 𝑤 } ) ∈ ω ) |
| 52 | breq2 | ⊢ ( 𝑣 = ( 𝑤 ∪ { 𝑤 } ) → ( ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ↔ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) ) | |
| 53 | 52 | rspcev | ⊢ ( ( ( 𝑤 ∪ { 𝑤 } ) ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ∃ 𝑣 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ) |
| 54 | 51 53 | sylan | ⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ∃ 𝑣 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ) |
| 55 | isfi | ⊢ ( ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ∈ Fin ↔ ∃ 𝑣 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ 𝑣 ) | |
| 56 | 54 55 | sylibr | ⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ∈ Fin ) |
| 57 | 48 56 | eqeltrrid | ⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ∪ { 𝑧 } ) ≈ ( 𝑤 ∪ { 𝑤 } ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 58 | 47 57 | syldan | ⊢ ( ( 𝑤 ∈ ω ∧ ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 59 | 58 | rexlimiva | ⊢ ( ∃ 𝑤 ∈ ω ( ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 60 | 29 59 | sylbir | ⊢ ( ( ∃ 𝑤 ∈ ω ( 𝐴 ∪ 𝑦 ) ≈ 𝑤 ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 61 | 28 60 | sylan | ⊢ ( ( ( 𝐴 ∪ 𝑦 ) ∈ Fin ∧ ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 62 | 61 | ancoms | ⊢ ( ( ( ¬ 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 63 | 62 | expl | ⊢ ( ¬ 𝑧 ∈ 𝐴 → ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 64 | 26 63 | pm2.61i | ⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 65 | 64 | ex | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝐴 ∪ 𝑦 ) ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 66 | 65 | imim2d | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 67 | 66 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝑦 ) ∈ Fin ) → ( 𝐴 ∈ Fin → ( 𝐴 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 68 | 3 6 9 12 15 67 | findcard2s | ⊢ ( 𝐵 ∈ Fin → ( 𝐴 ∈ Fin → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) ) |
| 69 | 68 | impcom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |