This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012) (Proof shortened by Mario Carneiro, 13-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashsng | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | en2sn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ ) → { 𝐴 } ≈ { 1 } ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≈ { 1 } ) |
| 4 | snfi | ⊢ { 𝐴 } ∈ Fin | |
| 5 | snfi | ⊢ { 1 } ∈ Fin | |
| 6 | hashen | ⊢ ( ( { 𝐴 } ∈ Fin ∧ { 1 } ∈ Fin ) → ( ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ↔ { 𝐴 } ≈ { 1 } ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ↔ { 𝐴 } ≈ { 1 } ) |
| 8 | 3 7 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ) |
| 9 | fzsn | ⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) | |
| 10 | 9 | fveq2d | ⊢ ( 1 ∈ ℤ → ( ♯ ‘ ( 1 ... 1 ) ) = ( ♯ ‘ { 1 } ) ) |
| 11 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 12 | hashfz1 | ⊢ ( 1 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 1 ) ) = 1 ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ♯ ‘ ( 1 ... 1 ) ) = 1 |
| 14 | 10 13 | eqtr3di | ⊢ ( 1 ∈ ℤ → ( ♯ ‘ { 1 } ) = 1 ) |
| 15 | 1 14 | ax-mp | ⊢ ( ♯ ‘ { 1 } ) = 1 |
| 16 | 8 15 | eqtrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ { 𝐴 } ) = 1 ) |